Metals in lacustrine sediment have both anthropogenic and natural sources. Because of intensified human activities, the anthropogenic input of metal elements has exceeded the natural variability. How to distinguish the anthropogenic sources in lake sediments is one of the tasks in environmental management. The authors present a case study, which combined the geochemical and statistical methods to distinguish the anthropogenic sources from the natural background. A 56 cm core (core DJ-5) was collected from Dongjiu Lake, Taihu Lake catchment, China. The concentration distributions of Al, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, Ti, V and Zn in core DJ-5 indicated that Dongjiu Lake had serious Cd pollution, and the concentrations of Cr, Cu, Pb, Mn and Zn had also exceeded the Chinese State Standards of Soil Environmental Quality in the upper layer of the core. Using Al as a reference element, the other metals were normalized and compared with their baselines to calculate the enrichment factors (EFs). The principal component analysis (PCA) of metal concentrations was performed using ViSta6.4. The results of EFs and PCA indicated that the concentration variations of Cd, Cu, Pb, Mn and Zn were mainly caused by the anthropogenic sources, and the concentration variations of Cr and Ni were influenced by both the anthropogenic and natural factors, while the other metals were mainly derived from the natural sources. Intensified human activities within the lake catchment area resulted in the increase of heavy metal inputs directly and the acceleration of erosion which caused other metal elements to deposit in the aquatic environment. The results of this work will be useful in probing changes forced by humans in the lake environment and in adjusting human activity in restoring the lake environment.