A computational paradigm for multiresolution topology optimization (MTOP)

被引:178
|
作者
Nguyen, Tam H. [1 ]
Paulino, Glaucio H. [1 ]
Song, Junho [1 ]
Le, Chau H. [1 ]
机构
[1] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Topology optimization; Density mesh; Design variable; Multiresolution; Finite element mesh; Projection scheme; CHECKERBOARD PATTERNS; DESIGN; SCALE; SCHEME; SHAPE;
D O I
10.1007/s00158-009-0443-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a multiresolution topology optimization (MTOP) scheme to obtain high resolution designs with relatively low computational cost. We employ three distinct discretization levels for the topology optimization procedure: the displacement mesh (or finite element mesh) to perform the analysis, the design variable mesh to perform the optimization, and the density mesh (or density element mesh) to represent material distribution and compute the stiffness matrices. We employ a coarser discretization for finite elements and finer discretization for both density elements and design variables. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. We demonstrate via various two- and three-dimensional numerical examples that the resolution of the design can be significantly improved without refining the finite element mesh.
引用
收藏
页码:525 / 539
页数:15
相关论文
共 50 条
  • [21] Computational challenges for multi-physics topology optimization
    Bendsoe, Martin P.
    [J]. COMPUTATIONAL MECHANICS: SOLIDS, STRUCTURES AND COUPLED PROBLEMS, 2006, 6 : 1 - 20
  • [22] Computational analysis of prosthesis production via topology optimization
    Tavares, Cassiano da Silva
    Rubert, Jose Benaque
    [J]. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2024, 27 (06) : 785 - 795
  • [23] Computational Acceleration of Topology Optimization Using Deep Learning
    Rasulzade, Jalal
    Rustamov, Samir
    Akhmetov, Bakytzhan
    Maksum, Yelaman
    Nogaibayeva, Makpal
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [24] Polygonal multiresolution topology optimization of multi-material structures subjected to dynamic loads
    Jiang, Xudong
    Ma, Jiaqi
    Teng, Xiaoyan
    [J]. INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2023, 19 (02) : 351 - 373
  • [25] Polygonal multiresolution topology optimization of multi-material structures subjected to dynamic loads
    Xudong Jiang
    Jiaqi Ma
    Xiaoyan Teng
    [J]. International Journal of Mechanics and Materials in Design, 2023, 19 : 351 - 373
  • [26] Multiresolution learning paradigm and signal prediction
    Liang, Y
    Page, EW
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (11) : 2858 - 2864
  • [27] Topology preserving and controlled topology simplifying multiresolution isosurface extraction
    Gerstner, T
    Pajarola, R
    [J]. VISUALIZATION 2000, PROCEEDINGS, 2000, : 259 - 266
  • [28] Fluid flow topology optimization in PolyTop: stability and computational implementation
    Pereira, Anderson
    Talischi, Cameron
    Paulino, Glaucio H.
    Menezes, Ivan F. M.
    Carvalho, Marcio S.
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2016, 54 (05) : 1345 - 1364
  • [29] Fluid flow topology optimization in PolyTop: stability and computational implementation
    Anderson Pereira
    Cameron Talischi
    Glaucio H. Paulino
    Ivan F. M. Menezes
    Marcio S. Carvalho
    [J]. Structural and Multidisciplinary Optimization, 2016, 54 : 1345 - 1364
  • [30] Density gradient-based adaptive refinement of analysis mesh for efficient multiresolution topology optimization
    Mezzadri, Francesco
    Qian, Xiaoping
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (02) : 465 - 504