A computational paradigm for multiresolution topology optimization (MTOP)

被引:179
|
作者
Nguyen, Tam H. [1 ]
Paulino, Glaucio H. [1 ]
Song, Junho [1 ]
Le, Chau H. [1 ]
机构
[1] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Topology optimization; Density mesh; Design variable; Multiresolution; Finite element mesh; Projection scheme; CHECKERBOARD PATTERNS; DESIGN; SCALE; SCHEME; SHAPE;
D O I
10.1007/s00158-009-0443-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a multiresolution topology optimization (MTOP) scheme to obtain high resolution designs with relatively low computational cost. We employ three distinct discretization levels for the topology optimization procedure: the displacement mesh (or finite element mesh) to perform the analysis, the design variable mesh to perform the optimization, and the density mesh (or density element mesh) to represent material distribution and compute the stiffness matrices. We employ a coarser discretization for finite elements and finer discretization for both density elements and design variables. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. We demonstrate via various two- and three-dimensional numerical examples that the resolution of the design can be significantly improved without refining the finite element mesh.
引用
收藏
页码:525 / 539
页数:15
相关论文
共 50 条
  • [1] A computational paradigm for multiresolution topology optimization (MTOP)
    Tam H. Nguyen
    Glaucio H. Paulino
    Junho Song
    Chau H. Le
    [J]. Structural and Multidisciplinary Optimization, 2010, 41 : 525 - 539
  • [2] Multi-resolution topology optimization using adaptive isosurface variable grouping (MTOP-aIVG) for enhanced computational efficiency
    Yoo, Jaeeun
    Jang, In Gwun
    Lee, Ikjin
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 63 (04) : 1743 - 1766
  • [3] Multi-resolution topology optimization using adaptive isosurface variable grouping (MTOP-aIVG) for enhanced computational efficiency
    Jaeeun Yoo
    In Gwun Jang
    Ikjin Lee
    [J]. Structural and Multidisciplinary Optimization, 2021, 63 : 1743 - 1766
  • [4] Multiresolution topology optimization using isogeometric analysis
    Lieu, Qui X.
    Lee, Jaehong
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 112 (13) : 2025 - 2047
  • [5] Design and analysis adaptivity in multiresolution topology optimization
    Gupta, Deepak K.
    van Keulen, Fred
    Langelaar, Matthijs
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (03) : 450 - 476
  • [6] Simultaneous discrete and continuum multiresolution topology optimization
    Mejias, Gonzalo
    Zegard, Tomas
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2023, 66 (06)
  • [7] Simultaneous discrete and continuum multiresolution topology optimization
    Gonzalo Mejías
    Tomás Zegard
    [J]. Structural and Multidisciplinary Optimization, 2023, 66
  • [8] Improving multiresolution topology optimization via multiple discretizations
    Nguyen, Tam H.
    Paulino, Glaucio H.
    Song, Junho
    Le, Chau H.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 92 (06) : 507 - 530
  • [9] QR-patterns: artefacts in multiresolution topology optimization
    Deepak K. Gupta
    Matthijs Langelaar
    Fred van Keulen
    [J]. Structural and Multidisciplinary Optimization, 2018, 58 : 1335 - 1350
  • [10] Polygonal multiresolution topology optimization (PolyMTOP) for structural dynamics
    Evgueni T. Filipov
    Junho Chun
    Glaucio H. Paulino
    Junho Song
    [J]. Structural and Multidisciplinary Optimization, 2016, 53 : 673 - 694