A Fully Convolutional Network for Salient Object Detection

被引:1
|
作者
Bianco, Simone [1 ]
Buzzelli, Marco [1 ]
Schettini, Raimondo [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Informat Sistemist & Comunicaz, Viale Sarca 336, I-20126 Milan, Italy
关键词
Salient object detection; Fully convolutional neural network; Foreground/background segmentation;
D O I
10.1007/978-3-319-68548-9_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we address the task of salient object detection without requiring an explicit object class recognition. To this end, we propose a solution that exploits intermediate activations of a Fully Convolutional Neural Network previously trained for the recognition of 1,000 object classes, in order to gather generic object information at different levels of resolution. This is done by using both convolution and convolution-transpose layers, and combining their activations to generate a pixel-level salient object segmentation. Experiments are conducted on a standard benchmark that involves seven heterogeneous datasets. On average our solution outperforms the state of the art according to multiple evaluation measures.
引用
收藏
页码:82 / 92
页数:11
相关论文
共 50 条
  • [11] SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection
    Shengfeng He
    Rynson W. H. Lau
    Wenxi Liu
    Zhe Huang
    Qingxiong Yang
    International Journal of Computer Vision, 2015, 115 : 330 - 344
  • [12] SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection
    He, Shengfeng
    Lau, Rynson W. H.
    Liu, Wenxi
    Huang, Zhe
    Yang, Qingxiong
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 115 (03) : 330 - 344
  • [13] DAGCN: Dynamic and Adaptive Graph Convolutional Network for Salient Object Detection
    Li, Ce
    Liu, Fenghua
    Tian, Zhiqiang
    Du, Shaoyi
    Wu, Yang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (06) : 7612 - 7626
  • [14] Embedding topological features into convolutional neural network salient object detection
    Zhou, Lecheng
    Gu, Xiaodong
    NEURAL NETWORKS, 2020, 121 : 308 - 318
  • [15] End-to-End Object Detection with Fully Convolutional Network
    Wang, Jianfeng
    Song, Lin
    Li, Zeming
    Sun, Hongbin
    Sun, Jian
    Zheng, Nanning
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 15844 - 15853
  • [16] MULTI-SCALE GRAPH CONVOLUTIONAL INTERACTION NETWORK FOR SALIENT OBJECT DETECTION
    Che, Wenqi
    Sun, Luoyi
    Xie, Zhifeng
    Ding, Youdong
    Han, Kaili
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 679 - 683
  • [17] Object Contour Detection with a Fully Convolutional Encoder-Decoder Network
    Yang, Jimei
    Price, Brian
    Cohen, Scott
    Lee, Honglak
    Yang, Ming-Hsuan
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 193 - 202
  • [18] FULLY CONVOLUTIONAL NETWORK WITH DENSELY FEATURE FUSION MODELS FOR OBJECT DETECTION
    Huang, Shouzhi
    Li, Xiaoyu
    Jiang, Zhuqing
    Guo, Xiaoqiang
    Men, Aidong
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,
  • [19] Attention CoupleNet: Fully Convolutional Attention Coupling Network for Object Detection
    Zhu, Yousong
    Zhao, Chaoyang
    Guo, Haiyun
    Wang, Jinqiao
    Zhao, Xu
    Lu, Hanqing
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (01) : 113 - 126
  • [20] A Fully Convolutional Network based on Spatial Attention for Saliency Object Detection
    Chen, Kai
    Wang, Yongxiong
    Hu, Chuanfei
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 5707 - 5711