A Fully Convolutional Network for Salient Object Detection

被引:1
|
作者
Bianco, Simone [1 ]
Buzzelli, Marco [1 ]
Schettini, Raimondo [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Informat Sistemist & Comunicaz, Viale Sarca 336, I-20126 Milan, Italy
关键词
Salient object detection; Fully convolutional neural network; Foreground/background segmentation;
D O I
10.1007/978-3-319-68548-9_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we address the task of salient object detection without requiring an explicit object class recognition. To this end, we propose a solution that exploits intermediate activations of a Fully Convolutional Neural Network previously trained for the recognition of 1,000 object classes, in order to gather generic object information at different levels of resolution. This is done by using both convolution and convolution-transpose layers, and combining their activations to generate a pixel-level salient object segmentation. Experiments are conducted on a standard benchmark that involves seven heterogeneous datasets. On average our solution outperforms the state of the art according to multiple evaluation measures.
引用
收藏
页码:82 / 92
页数:11
相关论文
共 50 条
  • [1] Salient Object Detection with Multiscale Context Enhanced Fully Convolutional Network
    Ling Y.
    Chen Y.
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (11): : 2007 - 2016
  • [2] SRFCNM: Spatiotemporal recurrent fully convolutional network model for salient object detection
    Ishita Arora
    M. Gangadharappa
    [J]. Multimedia Tools and Applications, 2024, 83 : 38009 - 38036
  • [3] Salient Object Detection with Chained Multi-Scale Fully Convolutional Network
    Tang, Youbao
    Wu, Xiangqian
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 618 - 626
  • [4] SRFCNM: Spatiotemporal recurrent fully convolutional network model for salient object detection
    Arora, Ishita
    Gangadharappa, M.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (13) : 38009 - 38036
  • [5] Salient Object Detection with Recurrent Fully Convolutional Networks
    Wang, Linzhao
    Wang, Lijun
    Lu, Huchuan
    Zhang, Pingping
    Ruan, Xiang
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (07) : 1734 - 1746
  • [6] Video Salient Object Detection via Fully Convolutional Networks
    Wang, Wenguan
    Shen, Jianbing
    Shao, Ling
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) : 38 - 49
  • [7] A Lightweight Convolutional Neural Network for Salient Object Detection
    Fei, Fengchang
    Liu, Wei
    Shu, Lei
    [J]. TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2024, 31 (04): : 1402 - 1410
  • [8] Edge-Guided Non-Local Fully Convolutional Network for Salient Object Detection
    Tu, Zhengzheng
    Ma, Yan
    Li, Chenglong
    Tang, Jin
    Luo, Bin
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (02) : 582 - 593
  • [9] Hypergraph attentional convolutional neural network for salient object detection
    Ze-yu Liu
    Jian-wei Liu
    [J]. The Visual Computer, 2023, 39 : 2881 - 2907
  • [10] Hypergraph attentional convolutional neural network for salient object detection
    Liu, Ze-yu
    Liu, Jian-wei
    [J]. VISUAL COMPUTER, 2023, 39 (07): : 2881 - 2907