Size-Dependent Magnetic Heating of MnFe2O4 Nanoparticles

被引:10
|
作者
Nguyen, L. H. [1 ,2 ]
Phuc, N. X. [3 ]
Manh, D. H. [4 ]
Nam, N. H. [4 ]
Truong, N. X. [4 ]
Quynh, N. V. [5 ]
Phong, P. T. [6 ]
Nam, P. H. [4 ,7 ]
机构
[1] Ton Duc Thang Univ, Adv Inst Mat Sci, Lab Magnetism & Magnet Mat, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Appl Sci, Ho Chi Minh City, Vietnam
[3] Duy Tan Univ, Inst Res & Dev, K7-25 Quang Trung St, Da Nang City, Vietnam
[4] Vietnam Acad Sci & Technol, Inst Mat Sci, 18 Hoang Quoc Viet St, Ha Noi City, Vietnam
[5] Univ Sci & Technol Hanoi USTH, Vietnam Acad Sci & Technol, 18 Hoang Quoc Viet St, Hanoi, Vietnam
[6] Univ Management & Technol, Ho Chi Minh City, Vietnam
[7] Grad Univ Sci & Technol, Vietnam Acad Sci & Technol, 18 Hoang Quoc Viet St, Hanoi, Vietnam
关键词
Specific absorption rate; MnFe2O4; magnetic inductive heating; effective magnetic anisotropy; LOSS POWER; HYPERTHERMIA; EFFICIENCY; FIELD; RELAXATION; FLUIDS;
D O I
10.1007/s11664-021-09056-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Magnetic nanoparticles with an optimal size seek high inductive heating performance, which plays an important role in biomedical applications. This work reports the critical size of MnFe2O4 particles at which the specific absorption rate (SAR) reaches its maximum value. MnFe2O4 nanoparticles with different sizes from similar to 11 nm to similar to 70 nm were synthesized using the hydrothermal method. Under an applied field amplitude of 80 Oe and frequency of 236 kHz, the 18-nm MnFe2O4 nanoparticles exhibited the highest SAR of 65.52 W/g. The effective magnetic anisotropy, as a function of particle size, was used to calculate the theoretical value of SAR in the framework of the linear response theory. Experimental results agreed well with the theoretical calculations in the superparamagnetic regime. This study may serve as a basis for the accurate prediction of the optimal size of magnetic nanoparticles in inductive heating.
引用
收藏
页码:5318 / 5326
页数:9
相关论文
共 50 条
  • [31] Synthesis of MnFe2O4 nanoparticles by mechanochemical reaction
    Osmokrovic, P
    Jovalekic, C
    Manojlovic, D
    Pavlovic, MB
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2006, 8 (01): : 312 - 314
  • [32] Superspin glass state in MnFe2O4 nanoparticles
    Aslibeiki, B.
    Kameli, P.
    Salamati, H.
    Eshraghi, M.
    Tahmasebi, T.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (19) : 2929 - 2934
  • [33] Influence of annealing temperature on structural and magnetic properties of MnFe2O4 nanoparticles
    Surowiec, Zbigniew
    Wiertel, Marek
    Gac, Wojciech
    Budzynski, Mieczysiaw
    NUKLEONIKA, 2015, 60 (01) : 137 - 141
  • [34] SONOCHEMICAL SYNTHESIS OF MnFe2O4 SPINEL NANOPARTICLES
    Sukhatskiy, Yu. V.
    Shepida, M. V.
    Korniy, S. A.
    MATERIALS SCIENCE, 2023, 59 (04) : 487 - 493
  • [35] Synthesis and photothermal applications of MnFe2O4 nanoparticles
    S. R. Shahina
    S. Vidya
    Journal of the Australian Ceramic Society, 2023, 59 : 481 - 490
  • [36] In vitro meningeal permeation of MnFe2O4 nanoparticles
    Mauro, Marcella
    Crosera, Matteo
    Bovenzi, Massimo
    Adami, Gianpiero
    Baracchini, Elena
    Maina, Giovanni
    Filon, Francesca Larese
    CHEMICO-BIOLOGICAL INTERACTIONS, 2018, 293 : 48 - 54
  • [37] NUCLEAR MAGNETIC RESONANCE IN FERRIMAGNETIC MNFE2O4
    HEEGER, AJ
    HOUSTON, TW
    PHYSICAL REVIEW, 1964, 135 (3A): : A661 - +
  • [38] Surface and exchange anisotropy fields in MnFe2O4 nanoparticles:: Size and temperature effects
    Bakuzis, AF
    Morais, PC
    Pelegrini, F
    JOURNAL OF APPLIED PHYSICS, 1999, 85 (10) : 7480 - 7482
  • [39] Magnetic properties of nanosized MnFe2O4 particles
    Zheng, M
    Wu, XC
    Zou, BS
    Wang, YJ
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1998, 183 (1-2) : 152 - 156
  • [40] Effect of ligand dispersant on superparamagnetic heating capacity and cytotoxicity properties of MnFe2O4 nanoparticles
    Vembakam Vijayakanth
    Krishnamoorthi Chintagumpala
    Journal of Materials Science: Materials in Electronics, 2024, 35