Efficient approaches to Gaussian Process classification

被引:0
|
作者
Csató, L [1 ]
Fokoué, E [1 ]
Opper, M [1 ]
Schottky, B [1 ]
Winther, O [1 ]
机构
[1] Aston Univ, Sch Engn & Appl Sci, Neural Comp Res Grp, Birmingham B4 7ET, W Midlands, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present three simple approximations for the calculation of the posterior mean in Gaussian Process classification. The first two methods are related to mean field ideas known in Statistical Physics. The third approach is based on Bayesian online approach which was motivated by recent results in the Statistical Mechanics of Neural Networks. We present simulation results showing: 1. that the mean field Bayesian evidence may be used for hyperparameter tuning and 2. that the online approach may achieve a low training error fast.
引用
收藏
页码:251 / 257
页数:7
相关论文
共 50 条
  • [21] LEARNING FILTERS IN GAUSSIAN PROCESS CLASSIFICATION PROBLEMS
    Ruiz, Pablo
    Mateos, Javier
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2913 - 2917
  • [22] Gaussian Process Classification Using Posterior Linearization
    Garcia-Fernandez, Angel F.
    Tronarp, Filip
    Sarkka, Simo
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (05) : 735 - 739
  • [23] Gaussian process classification using image deformation
    Williams, David P.
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 605 - 608
  • [24] Adversarial vulnerability bounds for Gaussian process classification
    Michael Thomas Smith
    Kathrin Grosse
    Michael Backes
    Mauricio A. Álvarez
    Machine Learning, 2023, 112 : 971 - 1009
  • [25] Bayesian Multitask Classification with Gaussian Process Priors
    Skolidis, Grigorios
    Sanguinetti, Guido
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (12): : 2011 - 2021
  • [26] Scalable Large Margin Gaussian Process Classification
    Wistuba, Martin
    Rawat, Ambrish
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT II, 2020, 11907 : 501 - 516
  • [27] Gaussian process classification for variable fidelity data
    Klyuchnikov, Nikita
    Burnaev, Evgeny
    NEUROCOMPUTING, 2020, 397 (397) : 345 - 355
  • [28] Estimation of region of attraction with Gaussian process classification
    Wang, Ke
    Menon, Prathyush P.
    Veenman, Joost
    Bennani, Samir
    EUROPEAN JOURNAL OF CONTROL, 2023, 74
  • [29] Adversarial vulnerability bounds for Gaussian process classification
    Smith, Michael Thomas
    Grosse, Kathrin
    Backes, Michael
    Alvarez, Mauricio A.
    MACHINE LEARNING, 2023, 112 (03) : 971 - 1009
  • [30] Variational Gaussian process for multisensor classification problems
    Rohani, Neda
    Ruiz, Pablo
    Molina, Rafael
    Katsaggelos, Aggelos K.
    PATTERN RECOGNITION LETTERS, 2018, 116 : 80 - 87