Hot Plasma Composition Analyzer for the Magnetospheric Multiscale Mission

被引:175
|
作者
Young, D. T. [1 ]
Burch, J. L. [1 ]
Gomez, R. G. [1 ]
De Los Santos, A. [1 ]
Miller, G. P. [1 ]
Wilson, P. [1 ]
Paschalidis, N. [4 ]
Fuselier, S. A. [1 ]
Pickens, K. [1 ]
Hertzberg, E. [2 ]
Pollock, C. J. [5 ]
Scherrer, J. [1 ]
Wood, P. B. [1 ]
Donald, E. T. [3 ]
Aaron, D. [1 ]
Furman, J. [1 ]
George, D. [1 ]
Gurnee, R. S. [3 ]
Hourani, R. S. [3 ]
Jacques, A. [4 ]
Johnson, T. [1 ]
Orr, T. [1 ]
Pan, K. S. [1 ]
Persyn, S. [1 ]
Pope, S. [1 ]
Roberts, J. [1 ]
Stokes, M. R. [3 ]
Trattner, K. J. [6 ]
Webster, J. M. [1 ]
机构
[1] SW Res Inst, Space Sci & Engn Div, San Antonio, TX 78238 USA
[2] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA
[3] Johns Hopkins Univ, Appl Phys Lab, Space Explorat Sect, Johns Hopkins Rd, Laurel, MD 20723 USA
[4] NASA, Goddard Space Flight Ctr, Code 670, Greenbelt, MD 20771 USA
[5] NASA, Goddard Space Flight Ctr, Code 673, Greenbelt, MD 20771 USA
[6] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA
基金
美国国家科学基金会;
关键词
Plasma ion composition; Reconnection measurements; Time-of-Flight mass spectrometry; ION COMPOSITION; MASS-SPECTROMETER; SPACE PLASMAS; RECONNECTION; DYNAMICS;
D O I
10.1007/s11214-014-0119-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper describes the science motivation, measurement objectives, performance requirements, detailed design, approach and implementation, and calibration of the four Hot Plasma Composition Analyzers (HPCA) for the Magnetospheric Multiscale mission. The HPCA is based entirely on electrostatic optics combining an electrostatic energy analyzer with a carbon-foil based time-of-flight analyzer. In order to fulfill mission requirements, the HPCA incorporates three unique technologies that give it very wide dynamic range capabilities essential to measuring minor ion species in the presence of extremely high proton fluxes found in the region of magnetopause reconnection. Dynamic range is controlled primarily by a novel radio frequency system analogous to an RF mass spectrometer. The RF, in combination with capabilities for high TOF event processing rates and high current micro-channel plates, ensures the dynamic range and sensitivity needed for accurate measurements of ion fluxes between similar to 1 eV and 40 keV that are expected in the region of reconnection events. A third technology enhances mass resolution in the presence of high proton flux. In order to calibrate the four HPCA instruments we have developed a unique ion calibration system. The system delivers a multi-species beam resolved to M/Delta M similar to 100 and current densities between 0.05 and 200 pA/cm(2) with a stability of +/- 5 %. The entire system is controlled by a dedicated computer synchronized with the HPCA ground support equipment. This approach results not only in accurate calibration but also in a comprehensive set of coordinated instrument and auxiliary data that makes analysis straightforward and ensures archival of all relevant data.
引用
收藏
页码:407 / 470
页数:64
相关论文
共 50 条
  • [41] Magnetospheric multiscale mission - Cross-scale exploration of complexity in the magnetosphere
    Sharma, AS
    Curtis, SA
    NONEQUILIBRIUM PHENOMENA IN PLASMAS, 2005, 321 : 179 - 195
  • [42] OPTIMAL CONTROL AND NEAR OPTIMAL GUIDANCE FOR THE MAGNETOSPHERIC MULTISCALE MISSION (MMS)
    Hughes, Steven P.
    ASTRODYNAMICS 2009, VOL 135, PTS 1-3, 2010, 135 : 439 - 462
  • [43] Magnetospheric plasma analyzer (MPA): Plasma observations from geosynchronous orbit
    McComas, DJ
    WORKSHOP ON THE EARTH'S TRAPPED PARTICLE ENVIRONMENT, 1996, (383): : 55 - 60
  • [44] Optimal Formation Design for Magnetospheric Multiscale Mission Using Differential Orbital Elements
    Roscoe, Christopher W. T.
    Vadali, Srinivas R.
    Alfriend, Kyle T.
    Desai, Uri P.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2011, 34 (04) : 1070 - 1080
  • [45] The occurrence and wave properties of EMIC waves observed by the Magnetospheric Multiscale (MMS) mission
    Wang, X. Y.
    Huang, S. Y.
    Allen, R. C.
    Fu, H. S.
    Deng, X. H.
    Zhou, M.
    Burch, J. L.
    Torbert, R. B.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (08) : 8228 - 8240
  • [46] Magnetic Discontinuities in the Solar Wind and Magnetosheath: Magnetospheric Multiscale Mission (MMS) Observations
    Liu, Y. Y.
    Fu, H. S.
    Cao, J. B.
    Wang, Z.
    He, R. J.
    Guo, Z. Z.
    Xu, Y.
    Yu, Y.
    ASTROPHYSICAL JOURNAL, 2022, 930 (01):
  • [47] Microchannel plate lifetime experiment for the DIS and DES instruments on the Magnetospheric Multiscale Mission
    Mackler, D.
    Avanov, L.
    Barrie, A.
    Chornay, D.
    Gershman, D.
    Giles, B.
    Pollock, C.
    Rager, A.
    Smith, S.
    PLANETARY AND SPACE SCIENCE, 2018, 161 : 92 - 98
  • [48] MAGNETOSPHERIC MULTISCALE MISSION (MMS) PHASE 2B NAVIGATION PERFORMANCE
    Scaperoth, Paige Thomas
    Long, Anne
    Carpenter, J. Russell
    ASTRODYNAMICS 2009, VOL 135, PTS 1-3, 2010, 135 : 335 - +
  • [49] MAGNETOSPHERIC MULTISCALE (MMS) MISSION COMMISSIONING PHASE ORBIT DETERMINATION ERROR ANALYSIS
    Chung, Lauren R.
    Novak, Stefan
    Long, Anne
    Gramling, Cheryl
    ASTRODYNAMICS 2009, VOL 135, PTS 1-3, 2010, 135 : 355 - +
  • [50] MAGNETOSPHERIC MULTISCALE MISSION NAVIGATION PERFORMANCE DURING APOGEE-RAISING AND BEYOND
    Farahmand, Mitra
    Long, Anne
    Hollister, Jacob
    Rose, Julie
    Godine, Dominic
    ASTRODYNAMICS 2017, PTS I-IV, 2018, 162 : 2723 - 2739