Instrumental variables for logistic regression: An illustration

被引:53
|
作者
Foster, EM [1 ]
机构
[1] Georgia State Univ, Sch Policy Studies, Atlanta, GA 30303 USA
关键词
D O I
10.1006/ssre.1997.0606
中图分类号
C91 [社会学];
学科分类号
030301 ; 1204 ;
摘要
The estimated effect of a regressor on an outcome is inconsistent when that regressor is determined simultaneously with that outcome. Instrumental variables estimation is a means of obtaining consistent parameter estimates in this situation. The best-known form of instrumental variables is two-stage least squares; unfortunately, this procedure cannot be simply extended to non-linear models such as logistic regression. instrumental variables estimation, however, is still possible, and using the Generalized Method of Moments, this paper is the first to produce instrumental variables estimates for logistic regression. Obtaining these estimates is easy using widely available software. An illustrative example is provided. This methodology should be useful to social scientists familiar with 2SLS and logistic regression. (C) 1997 Academic Press.
引用
收藏
页码:487 / 504
页数:18
相关论文
共 50 条
  • [31] Variable Selection for Sparse Logistic Regression with Grouped Variables
    Zhong, Mingrui
    Yin, Zanhua
    Wang, Zhichao
    [J]. MATHEMATICS, 2023, 11 (24)
  • [32] Reply: Logistic regression, odds ratio, and factor variables
    Mario Petretta
    Alberto Cuocolo
    [J]. Journal of Nuclear Cardiology, 2013, 20 : 652 - 653
  • [33] A bivariate logistic regression model based on latent variables
    Kristensen, Simon Bang
    Bibby, Bo Martin
    [J]. STATISTICS IN MEDICINE, 2020, 39 (22) : 2962 - 2979
  • [34] Validation Data-based Adjustments for Outcome Misclassification in Logistic Regression An Illustration
    Lyles, Robert H.
    Tang, Li
    Superak, Hillary M.
    King, Caroline C.
    Celentano, David D.
    Lo, Yungtai
    Sobel, Jack D.
    [J]. EPIDEMIOLOGY, 2011, 22 (04) : 589 - 598
  • [35] Adjusting for a cluster effect in the logistic regression model: an illustration of theory and its application
    Jayatillake, R. V.
    Sooriyarachchi, M. R.
    Senarathna, D. L. P.
    [J]. JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2011, 39 (03): : 211 - 218
  • [36] Cox's Proportional Hazards Regression Using Instrumental Variables
    Mackenzie, Todd
    Morden, Nancy
    Tosteson, Tor
    Stukel, Therese
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2012, 21 : 354 - 354
  • [37] Regression and weighting methods for causal inference using instrumental variables
    Tan, Zhiqiang
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (476) : 1607 - 1618
  • [38] Pivotal statistics for testing structural parameters in instrumental variables regression
    Kleibergen, F
    [J]. ECONOMETRICA, 2002, 70 (05) : 1781 - 1803
  • [39] A first-stage representation for instrumental variables quantile regression
    Alejo, Javier
    Galvao, Antonio F.
    Montes-Rojas, Gabriel
    [J]. ECONOMETRICS JOURNAL, 2023, 26 (03): : 350 - 377