Bayesian variable selection for time series count data

被引:0
|
作者
Ibrahim, JG
Chen, MH
Ryan, LM
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[2] Dana Farber Canc Inst, Boston, MA 02115 USA
[3] Worcester Polytech Inst, Worcester, MA 01609 USA
关键词
correlated counts; Gibbs sampling; hierarchical centering; historical data; Poisson regression; posterior distribution;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a parametric model for time series of counts by constructing a likelihood-based generalization of a model considered by Zeger (1988). We consider a Bayesian approach and propose a class of informative prior distributions for the model parameters that are useful for variable subset selection. The prior specification is motivated from the notion of the existence of data from similar previous studies, called historical data, which is then quantified in a prior distribution for the current study. We derive theoretical and computational properties of the proposed priors and develop novel methods for computing posterior model probabilities. To compute the posterior model probabilities, me show that only posterior samples from the full model are needed to estimate the posterior probabilities for all of the possible subset models. We demonstrate our methodology with a simulated and a real data set.
引用
收藏
页码:971 / 987
页数:17
相关论文
共 50 条
  • [31] Bayesian multiscale analysis for time series data
    Oigard, Tor Arne
    Rue, Havard
    Godtliebsen, Fred
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (03) : 1719 - 1730
  • [32] Bayesian Forecasting for Time Series of Categorical Data
    Angers, Jean-Francois
    Biswas, Atanu
    Maiti, Raju
    JOURNAL OF FORECASTING, 2017, 36 (03) : 217 - 229
  • [33] Bayesian analysis of time series Poisson data
    Oh, MS
    Lim, YB
    JOURNAL OF APPLIED STATISTICS, 2001, 28 (02) : 259 - 271
  • [34] Alive SMC2: Bayesian model selection for low-count time series models with intractable likelihoods
    Drovandi, Christopher C.
    McCutchan, Roy A.
    BIOMETRICS, 2016, 72 (02) : 344 - 353
  • [35] Multivariate Count Data Models for Time Series Forecasting
    Shapovalova, Yuliya
    Basturk, Nalan
    Eichler, Michael
    ENTROPY, 2021, 23 (06)
  • [36] Time series of count data: modeling, estimation and diagnostics
    Jung, Robert C.
    Kukuk, Martin
    Liesenfeld, Roman
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (04) : 2350 - 2364
  • [37] Bivariate time series modeling of financial count data
    Quoreshi, A. M. M. Shahiduzzaman
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (07) : 1343 - 1358
  • [38] A flexible Bayesian variable selection approach for modeling interval data
    Sen, Shubhajit
    Kundu, Damitri
    Das, Kiranmoy
    STATISTICAL METHODS AND APPLICATIONS, 2024, 33 (01): : 267 - 286
  • [39] Bayesian Variable Selection Regression of Multivariate Responses for Group Data
    Liquet, B.
    Mengersen, K.
    Pettitt, A. N.
    Sutton, M.
    BAYESIAN ANALYSIS, 2017, 12 (04): : 1039 - 1067
  • [40] Bayesian variable selection in clustering high-dimensional data
    Tadesse, MG
    Sha, N
    Vannucci, M
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (470) : 602 - 617