The Use of the Label Hierarchy in Hierarchical Multi-label Classification Improves Performance

被引:1
|
作者
Levatic, Jurica [1 ]
Kocev, Dragi [1 ]
Dzeroski, Saso [1 ]
机构
[1] Jozef Stefan Inst, Dept Knowledge Technol, Ljubljana, Slovenia
关键词
Predictive clustering trees; Hierarchical multi-label classification; Multi-label classification; Habitat modelling; Text classification; Image classification;
D O I
10.1007/978-3-319-08407-7_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address the task of learning models for predicting structured outputs. We consider both global and local approaches to the prediction of structured outputs, the former based on a single model that predicts the entire output structure and the latter based on a collection of models, each predicting a component of the output structure. More specifically, we compare local and global approaches in terms of predictive performance, learning time and model complexity. Moreover, we discuss the interpretability of the obtained models. We evaluate the predictive performance of the considered approaches on six case studies from three domains: ecological modelling, text classification and image classification. Finally, we identify the properties of the tasks at hand that lead to the differences in performance.
引用
收藏
页码:162 / 177
页数:16
相关论文
共 50 条
  • [1] The importance of the label hierarchy in hierarchical multi-label classification
    Jurica Levatić
    Dragi Kocev
    Sašo Džeroski
    Journal of Intelligent Information Systems, 2015, 45 : 247 - 271
  • [2] The importance of the label hierarchy in hierarchical multi-label classification
    Levatic, Jurica
    Kocev, Dragi
    Dzeroski, Saso
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2015, 45 (02) : 247 - 271
  • [3] Effects of the hierarchy in hierarchical, multi-label classification
    Daisey, Katie
    Brown, Steven D.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 207
  • [4] Hierarchical Multi-Label Classification with Partial Labels and Unknown Hierarchy
    Jo, Suhyeon
    Shin, DongHyeok
    Na, Byeonghu
    Jang, JoonHo
    Moon, Il-Chul
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 1025 - 1034
  • [5] An Empirical Comparison of Flat and Hierarchical Performance Measures for Multi-Label Classification with Hierarchy Extraction
    Brucker, Florian
    Benites, Fernando
    Sapozhnikova, Elena
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT I: 15TH INTERNATIONAL CONFERENCE, KES 2011, 2011, 6881 : 579 - 589
  • [6] Label Correction Strategy on Hierarchical Multi-Label Classification
    Ananpiriyakul, Thanawut
    Poomsirivilai, Piyapan
    Vateekul, Peerapon
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, MLDM 2014, 2014, 8556 : 213 - 227
  • [7] Hierarchy exploitation to detect missing annotations on hierarchical multi-label classification
    Romero, Miguel
    Nakano, Felipe Kenji
    Finke, Jorge
    Rocha, Camilo
    Vens, Celine
    arXiv, 2022,
  • [8] ReliefF for Hierarchical Multi-label Classification
    Slavkov, Ivica
    Karcheska, Jana
    Kocev, Dragi
    Kalajdziski, Slobodan
    Dzeroski, Saso
    NEW FRONTIERS IN MINING COMPLEX PATTERNS, NFMCP 2013, 2014, 8399 : 148 - 161
  • [9] Hierarchical Multi-Label Classification Networks
    Wehrmann, Jonatas
    Cerri, Ricardo
    Barros, Rodrigo C.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [10] Leveraging class hierarchy for detecting missing annotations on hierarchical multi-label classification
    Romero, Miguel
    Nakano, Felipe Kenji
    Finke, Jorge
    Rocha, Camilo
    Vens, Celine
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 152