Leveraging class hierarchy for detecting missing annotations on hierarchical multi-label classification

被引:3
|
作者
Romero, Miguel [1 ]
Nakano, Felipe Kenji [2 ,3 ]
Finke, Jorge [1 ]
Rocha, Camilo [1 ]
Vens, Celine [2 ,3 ]
机构
[1] Pontificia Univ Javeriana, Dept Elect & Comp Sci, Calle 18 N 118-250, Cali 760031, Colombia
[2] KU Leuven Campus KULAK, Dept Publ Hlth & Primary Care, Etienne Sabbelaan 53, B-8500 Kortrijk, Belgium
[3] Katholieke Univ Leuven, Itec, imec Res Grp, Etienne Sabbelaan 53, B-8500 Kortrijk, Belgium
关键词
Detecting missing annotations; Hierarchical multi -label classification; Structured output prediction; Gene function prediction; Gene ontology hierarchy; Random forest; Tree ensembles; GENE; INFORMATION; PREDICTION; ONTOLOGY; DATABASE;
D O I
10.1016/j.compbiomed.2022.106423
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the development of new sequencing technologies, availability of genomic data has grown exponentially. Over the past decade, numerous studies have used genomic data to identify associations between genes and biological functions. While these studies have shown success in annotating genes with functions, they often assume that genes are completely annotated and fail to take into account that datasets are sparse and noisy. This work proposes a method to detect missing annotations in the context of hierarchical multi-label classification. More precisely, our method exploits the relations of functions, represented as a hierarchy, by computing probabilities based on the paths of functions in the hierarchy. By performing several experiments on a variety of rice (Oriza sativa Japonica), we showcase that the proposed method accurately detects missing annotations and yields superior results when compared to state-of-art methods from the literature.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Hierarchy exploitation to detect missing annotations on hierarchical multi-label classification
    Romero, Miguel
    Nakano, Felipe Kenji
    Finke, Jorge
    Rocha, Camilo
    Vens, Celine
    arXiv, 2022,
  • [2] The importance of the label hierarchy in hierarchical multi-label classification
    Jurica Levatić
    Dragi Kocev
    Sašo Džeroski
    Journal of Intelligent Information Systems, 2015, 45 : 247 - 271
  • [3] The importance of the label hierarchy in hierarchical multi-label classification
    Levatic, Jurica
    Kocev, Dragi
    Dzeroski, Saso
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2015, 45 (02) : 247 - 271
  • [4] Effects of the hierarchy in hierarchical, multi-label classification
    Daisey, Katie
    Brown, Steven D.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 207
  • [5] The Use of the Label Hierarchy in Hierarchical Multi-label Classification Improves Performance
    Levatic, Jurica
    Kocev, Dragi
    Dzeroski, Saso
    NEW FRONTIERS IN MINING COMPLEX PATTERNS, NFMCP 2013, 2014, 8399 : 162 - 177
  • [6] Hierarchical Multi-Label Classification with Partial Labels and Unknown Hierarchy
    Jo, Suhyeon
    Shin, DongHyeok
    Na, Byeonghu
    Jang, JoonHo
    Moon, Il-Chul
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 1025 - 1034
  • [7] ReliefF for Hierarchical Multi-label Classification
    Slavkov, Ivica
    Karcheska, Jana
    Kocev, Dragi
    Kalajdziski, Slobodan
    Dzeroski, Saso
    NEW FRONTIERS IN MINING COMPLEX PATTERNS, NFMCP 2013, 2014, 8399 : 148 - 161
  • [8] Hierarchical Multi-Label Classification Networks
    Wehrmann, Jonatas
    Cerri, Ricardo
    Barros, Rodrigo C.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [9] Multi-dimensional multi-label classification: Towards encompassing heterogeneous label spaces and multi-label annotations
    Jia, Bin -Bin
    Zhang, Min -Ling
    PATTERN RECOGNITION, 2023, 138
  • [10] Multi-label Classification with Partial Annotations using Class-aware Selective Loss
    Ben-Baruch, Emanuel
    Ridnik, Tal
    Friedman, Itamar
    Ben-Cohen, Avi
    Zamir, Nadav
    Noy, Asaf
    Zelnik-Manor, Lihi
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4754 - 4762