Effects of Shell Strain on Valence Band Structure and Transport Properties of Ge/Si1-xGex Core-Shell Nanowire

被引:6
|
作者
Xu, Honghua [1 ,2 ]
Liu, Xiaoyan [1 ,2 ]
Du, Gang [1 ,2 ]
Zhao, Yuning [1 ,2 ]
He, Yuhui [3 ]
Fan, Chun [4 ]
Han, Ruqi [1 ,2 ]
Kang, Jinfeng [1 ,2 ]
机构
[1] Peking Univ, Inst Microelect, Beijing 100871, Peoples R China
[2] Minist Educ, Key Lab Microelect Devices & Circuits, Beijing 100871, Peoples R China
[3] Chinese Acad Sci, Inst Microelect, Key Lab Nanofabricat & Novel Devices Integrat Tec, Beijing 100029, Peoples R China
[4] Peking Univ, Ctr Comp, Beijing 100871, Peoples R China
关键词
GROWTH; SILICON; VAPOR;
D O I
10.1143/JJAP.49.04DN01
中图分类号
O59 [应用物理学];
学科分类号
摘要
Various Si1-xGex shell strains induced by changing the thickness or tuning the Ge and Si contents as well as by modulating the valence band structure and hole transport characteristics of core/shell nanowire field effect transistors (FETs) have been calculated. As Si1-xGex shell thickness increases, the strained valence subbands shift upwards and warp markedly. Most of the corresponding hole effective masses of the top five subbands decrease. Meanwhile, the hole mobility of the Ge(110) nanowire increases with increasing shell thickness. As the Ge concentration in the Si1-xGex shell decreases, the strained valence subbands and hole mobility show similar shifts. As a result, our calculation indicates the possibility of improving the nanowire performance of heterostructure nanowire FETs. (C) 2010 The Japan Society of Applied Physics
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Vertical Ge/Si Core/Shell Nanowire Junctionless Transistor
    Chen, Lin
    Cai, Fuxi
    Otuonye, Ugo
    Lu, Wei D.
    NANO LETTERS, 2016, 16 (01) : 420 - 426
  • [42] Effects of Ge on the nucleation and growth of Si1-xGex
    Yamaguchi, S
    Park, SK
    Sugii, N
    Nakagawa, K
    Miyao, M
    NUCLEATION AND GROWTH PROCESSES IN MATERIALS, 2000, 580 : 153 - 158
  • [43] Ge/Si Core/Shell Nanowire Structures for Tunneling Devices
    Smith, Joshua T.
    Zhao, Yanjie
    Razavieh, Ali
    Yang, Chen
    Appenzeller, Joerg
    SIGE, GE, AND RELATED COMPOUNDS 4: MATERIALS, PROCESSING, AND DEVICES, 2010, 33 (06): : 707 - 714
  • [44] A k . p analytical model for valence band of biaxial strained Ge on (001) Si1-xGex
    Wang Guan-Yu
    Zhang He-Ming
    Gao Xiang
    Wang Bin
    Zhou Chun-Yu
    CHINESE PHYSICS B, 2012, 21 (05)
  • [45] A k·p analytical model for valence band of biaxial strained Ge on(001) Si1-xGex
    王冠宇
    张鹤鸣
    高翔
    王斌
    周春宇
    Chinese Physics B, 2012, (05) : 505 - 511
  • [46] Growth and doping control of Ge/Si and Si/Ge core-shell nanowires
    Nishibe, K.
    Jevasuwan, W.
    Mitome, M.
    Bando, Y.
    Wang, Zhong Lin
    Fukata, N.
    2016 COMPOUND SEMICONDUCTOR WEEK (CSW) INCLUDES 28TH INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE & RELATED MATERIALS (IPRM) & 43RD INTERNATIONAL SYMPOSIUM ON COMPOUND SEMICONDUCTORS (ISCS), 2016,
  • [47] Charge localization in [112] Si/Ge and Ge/Si core-shell nanowires
    Liu, Nuo
    Li, Yan-Rong
    Lu, Ning
    Yao, Yong-Xin
    Fang, Xiao-Wei
    Wang, Cai-Zhuang
    Ho, Kai-Ming
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (27)
  • [48] Preparation and Electrochemical Properties of Si/SiOxNanocomposites with Core-shell Structure
    Yang S.
    Li Y.
    Shen D.
    Dong W.
    Liu X.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2019, 47 (09): : 1313 - 1319
  • [49] First Principles Study of Stability and Electronic Properties of Sn/Ge Core-Shell Nanowire
    Bhuyan, Prabal Dev
    Gupta, Sanjeev K.
    Sonvane, Yogesh
    Gajjar, P. N.
    Nekrasov, K. A.
    Kupryazhkin, A. Ya
    PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019), 2019, 2174
  • [50] Coupling of coherent misfit strain and composition distributions in core-shell Ge/Ge1-xSnx nanowire light emitters
    Meng, A. C.
    Braun, M. R.
    Wang, Y.
    Fenrich, C. S.
    Xue, M.
    Diercks, D. R.
    Gorman, B. P.
    Richard, M-, I
    Marshall, A. F.
    Cai, W.
    Harris, J. S.
    McIntyre, P. C.
    MATERIALS TODAY NANO, 2019, 5