A Spatio-Temporal CRF for Human Interaction Understanding

被引:30
|
作者
Wang, Zhenhua [1 ]
Liu, Sheng [2 ]
Zhang, Jianhua [3 ]
Chen, Shengyong [2 ,4 ]
Guan, Qiu [2 ]
机构
[1] Zhejiang Univ Technol, Sch Comp Sci, Hangzhou 310014, Zhejiang, Peoples R China
[2] Zhejiang Univ Technol, Dept Comp Sci, Hangzhou 310014, Zhejiang, Peoples R China
[3] Zhejiang Univ Technol, Coll Comp Sci, Hangzhou 310014, Zhejiang, Peoples R China
[4] Tianjin Univ Technol, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
Conditional random fields (CRFs); human action recognition (HAR); interaction; video understanding; ACTION RECOGNITION;
D O I
10.1109/TCSVT.2016.2539699
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A better understanding of human interactions in videos can be achieved by simultaneously considering the coarse interactions between people, the action of each individual, and the activity of all people as a whole. We divide the recognition task into two stages. The first stage discriminates interactions and noninteractions, actions and activities based on local image information, while during the second stage, actions and activities are recognized in a global manner based on the local recognition results. A conditional random field (CRF) is designed to model human interactions in the spatio-temporal space. Different from most existing global models which cover either action or activity variables only, our model covers them both by considering the interactions between different types of variables. The graph structure of the CRF is predicted by a model learned from training data, which is different from traditional graph construction methods that typically rely on human heuristics. We learn the parameters of the CRF via structured support vector machine. We propose an efficient inference algorithm to tackle the estimation of labels in long videos containing many people. Our model admits both semantic-level understanding of human interactions in videos and competitive action and activity recognition performance.
引用
收藏
页码:1647 / 1660
页数:14
相关论文
共 50 条
  • [21] Spatio-temporal transcriptome of the human brain
    Hyo Jung Kang
    Yuka Imamura Kawasawa
    Feng Cheng
    Ying Zhu
    Xuming Xu
    Mingfeng Li
    André M. M. Sousa
    Mihovil Pletikos
    Kyle A. Meyer
    Goran Sedmak
    Tobias Guennel
    Yurae Shin
    Matthew B. Johnson
    Željka Krsnik
    Simone Mayer
    Sofia Fertuzinhos
    Sheila Umlauf
    Steven N. Lisgo
    Alexander Vortmeyer
    Daniel R. Weinberger
    Shrikant Mane
    Thomas M. Hyde
    Anita Huttner
    Mark Reimers
    Joel E. Kleinman
    Nenad Šestan
    Nature, 2011, 478 : 483 - 489
  • [22] Human identification by spatio-temporal symmetry
    Hayfron-Acquah, JB
    Nixon, MS
    Carter, JN
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL I, PROCEEDINGS, 2002, : 632 - 635
  • [23] Spatio-temporal transcriptome of the human brain
    Kang, Hyo Jung
    Kawasawa, Yuka Imamura
    Cheng, Feng
    Zhu, Ying
    Xu, Xuming
    Li, Mingfeng
    Sousa, Andre M. M.
    Pletikos, Mihovil
    Meyer, Kyle A.
    Sedmak, Goran
    Guennel, Tobias
    Shin, Yurae
    Johnson, Matthew B.
    Krsnik, Zeljka
    Mayer, Simone
    Fertuzinhos, Sofia
    Umlauf, Sheila
    Lisgo, Steven N.
    Vortmeyer, Alexander
    Weinberger, Daniel R.
    Mane, Shrikant
    Hyde, Thomas M.
    Huttner, Anita
    Reimers, Mark
    Kleinman, Joel E.
    Sestan, Nenad
    NATURE, 2011, 478 (7370) : 483 - 489
  • [24] Applying Spatio-temporal Databases to Interaction Agents
    Cuadra, Dolores
    Javier Calle, Francisco
    Rivero, Jessica
    del Valle, David
    INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE 2008, 2009, 50 : 536 - 540
  • [25] A spatio-temporal interaction on the apparent motion trace
    Schwiedrzik, C. M.
    Alink, A.
    Kohler, A.
    Singer, W.
    Muckli, L.
    PERCEPTION, 2007, 36 : 96 - 96
  • [26] A spatio-temporal interaction on the apparent motion trace
    Schwiedrzik, C. M.
    Alink, A.
    Kohler, A.
    Singer, W.
    Muckli, L.
    VISION RESEARCH, 2007, 47 (28) : 3424 - 3433
  • [27] Understanding the spatio-temporal variation of urbanisation in Kerala, India
    Krishna, Neema G.
    Alam, Sarfaraz
    Prakash, Satya
    Yadav, Khushaboo
    Ahmad, Sarah
    Ojha, Anjali
    GEOJOURNAL, 2024, 89 (04)
  • [28] Probabilistic spatio-temporal inference for motion event understanding
    Choi, Chang
    Choi, Junho
    Lee, Eunji
    You, Ilsun
    Kim, Pankoo
    NEUROCOMPUTING, 2013, 122 : 24 - 32
  • [29] Understanding the spatio-temporal evolution of fractures in pillow basalt
    Mondal, Sourav
    Mondal, Tridib Kumar
    Biswas, Sirshendu Kumar
    Das, Gourav
    GEOLOGICA ACTA, 2023, 21
  • [30] Unemployment in South Africa: Building a Spatio-temporal Understanding
    Weir-Smith, Gina
    Ahmed, Fethi
    SOUTH AFRICAN JOURNAL OF GEOMATICS, 2013, 2 (03): : 218 - 230