Automatic tissue segmentation by deep learning: from colorectal polyps in colonoscopy to abdominal organs in CT exam

被引:0
|
作者
Huang, Cheng-Hsien [1 ]
Xiao, Wei-Ting [1 ]
Chang, Li-Jen [2 ]
Tsai, Wei-Ta [3 ]
Liu, Wei-Min [1 ]
机构
[1] Natl Chung Cheng Univ, Dept CSIE, Chiayi, Taiwan
[2] Chia Yi Christian Hosp, Ditmanson Med Fdn, Chiayi, Taiwan
[3] Buddhist Dalin Tzu Chi Hosp, Dept Oncol, Chiayi, Taiwan
关键词
Colon cancer; CT image organ segmentation; Radiotherapy; Deep learning; Long short term memory network;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic tissue segmentation is extremely helpful in medical imaging related work. In this paper, we attempted to train two existing deep neural networks, SegNet and DeepLab, to solve two clinical imaging problems relevant to this topic. One is to locate the colorectal polyps in the colonoscopy images, and the other is to delineate the lung in CT images from axial direction. In order to enhance the segmentation capability of the two networks, the reversed version of long short term memory (LSTM) network are integrated with them by parallel connection. The performance is evaluated by mean intersection-over-union (IOU). We found that introducing LSTM is beneficial to segmentation of polyps, but not that significant for delineating the lung. The relevant results are reported in this work
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Automatic segmentation of abdominal organs from CT scans
    Campadelli, Paola
    Casiraghi, Elena
    Pratissoli, Stella
    19TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL I, PROCEEDINGS, 2007, : 513 - 516
  • [2] Efficient colorectal polyps segmentation using a deep learning ensemble framework from colonoscopy images
    Bajhaiya, Deepak
    Unni, Sujatha Narayanan
    2024 14TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2024,
  • [3] Deep learning based fast and fully-automated segmentation on abdominal multiple organs from CT
    Kim, Jieun
    Lee, June-Goo
    INTERNATIONAL FORUM ON MEDICAL IMAGING IN ASIA 2019, 2019, 11050
  • [4] Deep Learning Segmentation of Ascites on Abdominal CT Scans for Automatic Volume Quantification
    Hou, Benjamin
    Lee, Sungwon
    Lee, Jung-Min
    Koh, Christopher
    Xiao, Jing
    Pickhardt, Perry J.
    Summers, Ronald M.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2024, 6 (05)
  • [5] External validation of a deep learning model for automatic segmentation of skeletal muscle and adipose tissue on abdominal CT images
    van Dijk, David P. J.
    Volmer, Leroy F.
    Brecheisen, Ralph
    Martens, Bibi
    Dolan, Ross D.
    Bryce, Adam S.
    Chang, David K.
    McMillan, Donald C.
    Stoot, Jan H. M. B.
    West, Malcolm A.
    Rensen, Sander S.
    Dekker, Andre
    Wee, Leonard
    Damink, Steven W. M. Olde
    BRITISH JOURNAL OF RADIOLOGY, 2024, 97 (1164): : 2015 - 2023
  • [6] Deep learning to find colorectal polyps in colonoscopy: A systematic literature review
    Sanchez-Peralta, Luisa F.
    Bote-Curiel, Luis
    Picon, Artzai
    Sanchez-Margallo, Francisco M.
    Blas Pagador, J.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 108
  • [7] A segmentation framework for abdominal organs from CT scans
    Campadelli, Paola
    Casiraghi, Elena
    Pratissoli, Stella
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2010, 50 (01) : 3 - 11
  • [8] Deep learning in CT colonography: differentiating premalignant from benign colorectal polyps
    Philipp Wesp
    Sergio Grosu
    Anno Graser
    Stefan Maurus
    Christian Schulz
    Thomas Knösel
    Matthias P. Fabritius
    Balthasar Schachtner
    Benjamin M. Yeh
    Clemens C. Cyran
    Jens Ricke
    Philipp M. Kazmierczak
    Michael Ingrisch
    European Radiology, 2022, 32 : 4749 - 4759
  • [9] Deep learning in CT colonography: differentiating premalignant from benign colorectal polyps
    Wesp, Philipp
    Grosu, Sergio
    Graser, Anno
    Maurus, Stefan
    Schulz, Christian
    Knosel, Thomas
    Fabritius, Matthias P.
    Schachtner, Balthasar
    Yeh, Benjamin M.
    Cyran, Clemens C.
    Ricke, Jens
    Kazmierczak, Philipp M.
    Ingrisch, Michael
    EUROPEAN RADIOLOGY, 2022, 32 (07) : 4749 - 4759
  • [10] Automatic Segmentation in 3D CT Images: A Comparative Study of Deep Learning Architectures for the Automatic Segmentation of the Abdominal Aorta
    Mavridis, Christos
    Vagenas, Theodoros P.
    Economopoulos, Theodore L.
    Vezakis, Ioannis
    Petropoulou, Ourania
    Kakkos, Ioannis
    Matsopoulos, George K.
    ELECTRONICS, 2024, 13 (24):