Deep learning based fast and fully-automated segmentation on abdominal multiple organs from CT

被引:1
|
作者
Kim, Jieun [1 ]
Lee, June-Goo [1 ,2 ]
机构
[1] Univ Ulsan, Dept Convergence Med, Coll Med, Olymp Ro 3 Gil, Seoul 05505, South Korea
[2] Asan Med Ctr, Biomed Engn Res Ctr, Asan Inst Life Sci, Olymp Ro 3 Gil, Seoul 05505, South Korea
关键词
multiple organ segmentation; multi-organ segmentation; MPR based segmentation;
D O I
10.1117/12.2521689
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Effective segmentation of abdominal organs on CT images is necessary not only in the quantitative analysis but also in the dose simulation of radiational oncology. However, the manual or semi-automatic segmentation is tedious and subject to inter- and intra-observer variances. To overcome these shortcomings, the development of a fully automatic segmentation is required. In this paper, we propose the deep learning based fully-automated method to segment multiple organs from abdominal CT images and evaluate its performance on clinical dataset. Total 120 cases were used for training and testing. The DSC values in 20 test dataset were 0.945 +/- 0.016, 0.836 +/- 0.084, 0.912 +/- 0.052 and 0.886 +/- 0.068 for the liver, stomach, right and left kidney, respectively.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] PWD-3DNet: A Deep Learning-Based Fully-Automated Segmentation of Multiple Structures on Temporal Bone CT Scans
    Nikon, Soodeh
    Van Osch, Kylen
    Bartling, Mandolin
    Allen, Daniel G.
    Rohani, Alireza
    Connors, Ben
    Agrawal, Sumit K.
    Ladak, Hanif M.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 739 - 753
  • [2] Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
    Trebeschi, Stefano
    van Griethuysen, Joost J. M.
    Lambregts, Doenja M. J.
    Lahaye, Max J.
    Parmer, Chintan
    Bakers, Frans C. H.
    Peters, Nicky H. G. M.
    Beets-Tan, Regina G. H.
    Aerts, Hugo J. W. L.
    SCIENTIFIC REPORTS, 2017, 7
  • [3] Fully-automated deep learning pipeline for segmentation and classification of breast ultrasound images
    Podda, Alessandro Sebastian
    Balia, Riccardo
    Barra, Silvio
    Carta, Salvatore
    Fenu, Gianni
    Piano, Leonardo
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 63
  • [4] Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
    Stefano Trebeschi
    Joost J. M. van Griethuysen
    Doenja M. J. Lambregts
    Max J. Lahaye
    Chintan Parmar
    Frans C. H. Bakers
    Nicky H. G. M. Peters
    Regina G. H. Beets-Tan
    Hugo J. W. L. Aerts
    Scientific Reports, 7
  • [5] Fully automatic segmentation of abdominal organs from CT images using fast marching methods
    Campadelli, Paola
    Casiraghi, Elena
    Pratissoli, Stella
    PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, 2008, : 554 - 559
  • [6] Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks
    Huang, Xia
    Sun, Wenqing
    Tseng, Tzu-Liang
    Li, Chunqiang
    Qian, Wei
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 74 : 25 - 36
  • [7] Fully-Automated Left Ventricle Segmentation Using a Dilated and Adversarial Deep Learning Architecture
    Yao, Heming
    Gryak, Jonathan
    Derksen, Harm
    Attili, Anil K.
    Nallamothu, Brahmajee K.
    Najarian, Kayvan
    CIRCULATION, 2018, 138
  • [8] A fast and fully-automated deep-learning approach for accurate hemorrhage segmentation and volume quantification in non-contrast whole-head CT
    Ali Arab
    Betty Chinda
    George Medvedev
    William Siu
    Hui Guo
    Tao Gu
    Sylvain Moreno
    Ghassan Hamarneh
    Martin Ester
    Xiaowei Song
    Scientific Reports, 10
  • [9] A fast and fully-automated deep-learning approach for accurate hemorrhage segmentation and volume quantification in non-contrast whole-head CT
    Arab, Ali
    Chinda, Betty
    Medvedev, George
    Siu, William
    Guo, Hui
    Gu, Tao
    Moreno, Sylvain
    Hamarneh, Ghassan
    Ester, Martin
    Song, Xiaowei
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [10] Fully-Automated Drusen Segmentation in OCT using Deep Learning with Pyramid U-net
    Grechenig, Christoph
    Asgari, Fatemeh
    Gerendas, Bianca S.
    Waldstein, Sebastian M.
    Schlanitz, Ferdinand Georg
    Baratsits, Magdalena
    Bogunovic, Hrvoje
    Schmidt-Erfurth, Ursula
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)