Some properties of the multiset dimension of graphs

被引:4
|
作者
Bong, Novi H. [1 ]
Lin, Yuqing [2 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
[2] Univ Newcastle, Sch Elect Engn & Comp, Newcastle, NSW, Australia
关键词
multiset dimension; distance metric dimension; upper bound; METRIC DIMENSION;
D O I
10.5614/ejgta.2021.9.1.19
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The multiset dimension was introduced by Rinovia Simanjuntak et al. as a variation of metric dimension. In this problem, the representation of a vertex v with respect to a resolving set W is expressed as a multiset of distances between v and all vertices in W, including their multiplicities. The multiset dimension is defined to be the minimum cardinality of the resolving set. Clearly, this is at least the metric dimension of a graph. In this paper, we study the properties of the multiset dimension of graphs.
引用
收藏
页码:215 / 221
页数:7
相关论文
共 50 条
  • [21] The Metric Dimension of Some Generalized Petersen Graphs
    Shao, Zehui
    Sheikholeslami, S. M.
    Wu, Pu
    Liu, Jia-Biao
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [22] Bounds for the decomposition dimension of some class of graphs
    Varughese, Jinitha
    Reji, T.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (06)
  • [23] Decomposition dimension of Cartesian product of some graphs
    Reji, T.
    Ruby, R.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (04)
  • [24] The Hausdorff dimension of some random invariant graphs
    Moss, A.
    Walkden, C. P.
    NONLINEARITY, 2012, 25 (03) : 743 - 760
  • [25] Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs
    Liang, Langzhang
    Kim, Sunwoo
    Shin, Kijung
    Xu, Zenglin
    Pan, Shirui
    Qi, Yuan
    arXiv,
  • [26] On the dominant local metric dimension of some planar graphs
    Lal, Sohan
    Bhat, Vijay Kumar
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (07)
  • [27] Metric dimension of some distance-regular graphs
    Jun Guo
    Kaishun Wang
    Fenggao Li
    Journal of Combinatorial Optimization, 2013, 26 : 190 - 197
  • [28] On Mixed Metric Dimension of Some Path Related Graphs
    Raza, Hassan
    Ji, Ying
    Qu, Shaojian
    IEEE ACCESS, 2020, 8 : 188146 - 188153
  • [29] Edge metric dimension of some classes of circulant graphs
    Ahsan, Muhammad
    Zahid, Zohaib
    Zafar, Sohail
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2020, 28 (03): : 15 - 37
  • [30] Metric Dimension of Some Generalized Families of Toeplitz Graphs
    Nadeem, Muhammad Faisal
    Qu, Shaojian
    Ahmad, Ali
    Azeem, Muhammad
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022