Airway compliance measured by anatomic optical coherence tomography

被引:11
|
作者
Bu, Ruofei [1 ]
Balakrishnan, Santosh [1 ]
Iftimia, Nicusor [2 ]
Price, Hillel [3 ]
Zdanski, Carlton [4 ]
Oldenburg, Amy L. [1 ,3 ,5 ]
机构
[1] Univ North Carolina Chapel Hill, Dept Biomed Engn, Chapel Hill, NC 27599 USA
[2] Phys Sci Inc, New England Business Ctr, Andover, MA 01810 USA
[3] Univ North Carolina Chapel Hill, Dept Phys & Astron, Chapel Hill, NC 27599 USA
[4] Univ North Carolina Chapel Hill, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA
[5] Univ North Carolina Chapel Hill, Biomed Res Imaging Ctr, Chapel Hill, NC 27514 USA
来源
BIOMEDICAL OPTICS EXPRESS | 2017年 / 8卷 / 04期
基金
美国国家卫生研究院;
关键词
OBSTRUCTIVE SLEEP-APNEA; ROTATIONAL DISTORTION; SWEPT-SOURCE; IN-VIVO; SIZE; INDIVIDUALS; CHILDREN; SHAPE;
D O I
10.1364/BOE.8.002195
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Quantification of airway compliance can aid in the diagnosis and treatment of obstructive airway disorders by detecting regions vulnerable to collapse. Here we evaluate the ability of a swept-source anatomic optical coherence tomography (SSaOCT) system to quantify airway cross-sectional compliance (CC) by measuring changes in the luminal crosssectional area (CSA) under physiologically relevant pressures of 10-40 cmH(2)O. The accuracy and precision of CC measurements are determined using simulations of non-uniform rotation distortion (NURD) endemic to endoscopic scanning, and experiments performed in a simplified tube phantom and ex vivo porcine tracheas. NURD simulations show that CC measurements are typically more accurate than that of the CSAs from which they are derived. Phantom measurements of CSA versus pressure exhibit high linearity (R-2>0.99), validating the dynamic range of the SSaOCT system. Tracheas also exhibited high linearity (R-2 = 0.98) suggestive of linear elasticity, while CC measurements were obtained with typically +/- 12% standard error. (C) 2017 Optical Society of America
引用
收藏
页码:2195 / 2209
页数:15
相关论文
共 50 条
  • [41] Optical coherence tomography for the identification and quantification of human airway wall layers
    Goorsenberg, Annika W. M.
    d'Hooghe, J. N. S.
    de Bruin, D. M.
    Roelofs, J. J. T. H.
    Annema, J. T.
    Bonta, P. I.
    EUROPEAN RESPIRATORY JOURNAL, 2017, 50
  • [42] Upper airway vesicant damage detection using Optical Coherence Tomography
    Hammer-Wilson, MJ
    Jun, D
    Jung, WG
    Ahn, Y
    Chen, ZP
    Wilder-Smith, P
    LASERS IN SURGERY AND MEDICINE, 2006, : 83 - 83
  • [43] Fiber bundle optical coherence tomography system for endoscopic airway imaging
    Mahon, SB
    Mukai, DS
    Xie , TQ
    Chen, ZP
    Brenner, M
    CHEST, 2005, 128 (04) : 324S - 325S
  • [44] Optical coherence tomography for human airway wall layer identification and quantification
    d'Hooghe, Julia N. S.
    de Bruin, Daniel M.
    Roelofs, Joris J. T. H.
    Annema, Jouke T.
    Bonta, Peter I.
    EUROPEAN RESPIRATORY JOURNAL, 2016, 48
  • [45] Respiratory gating of anatomical optical coherence tomography images of the human airway
    McLaughlin, Robert A.
    Armstrong, Julian J.
    Becker, Sven
    Walsh, Jennifer H.
    Jain, Arpit
    Hillman, David R.
    Eastwood, Peter R.
    Sampson, David D.
    OPTICS EXPRESS, 2009, 17 (08): : 6568 - 6577
  • [46] Validation of Airway Wall Measurements by Optical Coherence Tomography in Porcine Airways
    Lee, Anthony M. D.
    Kirby, Miranda
    Ohtani, Keishi
    Candido, Tara
    Shalansky, Rebecca
    MacAulay, Calum
    English, John
    Finley, Richard
    Lam, Stephen
    Coxson, Harvey O.
    Lane, Pierre
    PLOS ONE, 2014, 9 (06):
  • [47] Automated segmentation and quantification of airway mucus with endobronchial optical coherence tomography
    Adams, David C.
    Pahlevaninezhad, Hamid
    Szabari, Margit V.
    Cho, Josalyn L.
    Hamilos, Daniel L.
    Kesimer, Mehmet
    Boucher, Richard C.
    Luster, Andrew D.
    Medoff, Benjamin D.
    Suter, Melissa J.
    BIOMEDICAL OPTICS EXPRESS, 2017, 8 (10): : 4729 - 4741
  • [48] Gender Differences in Airway Wall Measurements with Optical Coherence Tomography (OCT)
    Holy, L.
    Storness-Bliss, C.
    Wanono, R.
    Lam, S.
    Sin, D. D.
    McWilliams, A. M.
    Coxson, H. O.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2009, 179
  • [49] Airway morphological abnormalities of bronchiolitis assessed by endobronchial optical coherence tomography
    Su, Zhu-Quan
    Zhong, Ming-Lu
    Fan, Ming-Yue
    Rao, Wan-Yuan
    Zhou, Zi-Qing
    Chen, Yu
    Chen, Xiao-Bo
    Tang, Chun-Li
    Zhong, Chang-Hao
    Li, Shi-Yue
    THERAPEUTIC ADVANCES IN RESPIRATORY DISEASE, 2023, 17
  • [50] Using optical coherence tomography (OCT) imaging in the evaluation of airway dynamics
    Szabari, Margit V.
    Kelly, Vanessa J.
    Applegate, Matthew B.
    Chee, Chunmin
    Tan, Khay M.
    Hariri, Lida P.
    Harris, R. Scott
    Winkler, Tilo
    Suter, Melissa J.
    ENDOSCOPIC MICROSCOPY XI; AND OPTICAL TECHNIQUES IN PULMONARY MEDICINE III, 2016, 9691