Core-Shell Microgels with Switchable Elasticity at Constant Interfacial Interaction

被引:31
|
作者
Seuss, Maximilian [1 ]
Schmolke, Willi [2 ]
Drechsler, Astrid [1 ]
Fery, Andreas [1 ,3 ]
Seiffert, Sebastian [2 ]
机构
[1] Leibniz Inst Polymerforsch Dresden eV, Inst Phys Chem & Polymer Phys, Hohe Str 6, D-01069 Dresden, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Phys Chem, Duesbergweg 10-14, D-55128 Mainz, Germany
[3] Tech Univ Dresden, Dept Phys Chem Polymer Mat, Hohe Str 6, D-01069 Dresden, Germany
关键词
AFM; core-shell microgels; elasticity; interfacial interaction; thermoresponsivity; VOLUME PHASE-TRANSITION; ATOMIC-FORCE MICROSCOPE; POLY-N-ISOPROPYLACRYLAMIDE; ANGLE NEUTRON-SCATTERING; PHOTO-CROSS-LINKING; MECHANICAL-PROPERTIES; GELS; PARTICLES; BEHAVIOR; SUSPENSIONS;
D O I
10.1021/acsami.6b04339
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hydrogels based on poly(N-isopropylacrylamide) (pNIPAAm) exhibit a thermo-reversible volume phase transition from swollen to deswollen states. This change of the hydrogel volume is accompanied by changes of the hydrogel elastic and Young's moduli and of the hydrogel interfacial interactions. To decouple these parameters from one another, we present a class of submillimeter sized hydrogel particles that consist of a thermosensitive pNIPAAm core wrapped by a nonthermosensitive polyacrylamide (pAAm) shell, each templated by droplet based microfluidics. When the microgel core deswells upon increase of the temperature to above 34 degrees C, the shell is stretched and dragged to follow this deswelling into the microgel interior, resulting in an increase of the microgel surficial Young's modulus. However, as the surface interactions of the pAAm shell are independent of temperature at around 34 degrees C, they do not considerably change during the pNIPAAm-core volume phase transition. This feature makes these core shell microgels a promising platform to be used as building blocks to assemble soft materials with rationally and independently tunable mechanics.
引用
收藏
页码:16317 / 16327
页数:11
相关论文
共 50 条
  • [41] Swelling behaviour of PNIPAM-polyisoprene core-shell microgels at surface
    Horecha, Marta
    Senkovskyy, Volodymyr
    Schneider, Konrad
    Kiriy, Anton
    Stamm, Manfred
    COLLOID AND POLYMER SCIENCE, 2011, 289 (5-6) : 603 - 612
  • [42] Correlated Morphological Changes in the Volume Temperature Transition of Core-Shell Microgels
    Balaceanu, Andreea
    Verkh, Yaroslav
    Demco, Dan E.
    Moeller, Martin
    Pich, Andrij
    MACROMOLECULES, 2013, 46 (12) : 4882 - 4891
  • [43] Preparation and characterization of biocompatible smart core-shell polymeric microgels.
    Leung, MF
    Zhu, JM
    Frank, FW
    Li, P
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U965 - U965
  • [44] Dye-labeled poly(organosiloxane) microgels with core-shell architecture
    Graf, C
    Schärtl, W
    Fischer, K
    Hugenberg, N
    Schmidt, M
    LANGMUIR, 1999, 15 (19) : 6170 - 6180
  • [45] Thermosensitive core-shell microgels: From colloidal model systems to nanoreactors
    Lu, Yan
    Ballauff, Matthias
    PROGRESS IN POLYMER SCIENCE, 2011, 36 (06) : 767 - 792
  • [46] New route to smart core-shell polymeric microgels: Synthesis and properties
    Leung, MF
    Zhu, JM
    Harris, FW
    Li, P
    MACROMOLECULAR RAPID COMMUNICATIONS, 2004, 25 (21) : 1819 - 1823
  • [47] Preparation of thermoresponsive core-shell polymeric microspheres and hollow PNIPAM microgels
    Zhang, Feng
    Wang, Chang-Chun
    COLLOID AND POLYMER SCIENCE, 2008, 286 (8-9) : 889 - 895
  • [48] Tuning the Swelling Properties of Smart Multiresponsive Core-Shell Microgels by Copolymerization
    Braendel, Timo
    Dirksen, Maxim
    Hellweg, Thomas
    POLYMERS, 2019, 11 (08)
  • [49] Linearly thermoresponsive core-shell microgels: Towards a new class of nanoactuators
    Zeiser, Michael
    Freudensprung, Ines
    Hellweg, Thomas
    POLYMER, 2012, 53 (26) : 6096 - 6101
  • [50] Swelling behaviour of PNIPAM-polyisoprene core-shell microgels at surface
    Marta Horecha
    Volodymyr Senkovskyy
    Konrad Schneider
    Anton Kiriy
    Manfred Stamm
    Colloid and Polymer Science, 2011, 289 : 603 - 612