On the degeneration of asymptotically conical Calabi-Yau metrics

被引:1
|
作者
Collins, Tristan C. [1 ]
Guo, Bin [2 ]
Tong, Freid [3 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Rutgers Univ Newark, Dept Math & Comp Sci, 101 Warren St, Newark, NJ 07102 USA
[3] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
FLAT KAHLER-METRICS; SASAKI-EINSTEIN METRICS; RICCI CURVATURE; CREPANT RESOLUTIONS; COMPLEX-SURFACES; MANIFOLDS; SPACES; EXISTENCE; LIMITS;
D O I
10.1007/s00208-021-02229-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the degenerations of asymptotically conical Ricci-flat Kahler metrics as the Kahler class degenerates to a semi-positive class. We show that under appropriate assumptions, the Ricci-flat Kahler metrics converge to a incomplete smooth Ricci-flat Kahler metric away from a compact subvariety. As a consequence, we construct singular Calabi-Yau metrics with asymptotically conical behaviour at infinity on certain quasi-projective varieties and we show that the metric geometry of these singular metrics are homeomorphic to the topology of the singular variety. Finally, we will apply our results to study several classes of examples of geometric transitions between Calabi-Yau manifolds.
引用
收藏
页码:867 / 919
页数:53
相关论文
共 50 条
  • [21] Calabi-Yau manifolds with isolated conical singularities
    Hein, Hans-Joachim
    Sun, Song
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2017, 126 (01): : 73 - 130
  • [22] Calabi-Yau and fractional Calabi-Yau categories
    Kuznetsov, Alexander
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 753 : 239 - 267
  • [23] Calabi-Yau manifolds with isolated conical singularities
    Hans-Joachim Hein
    Song Sun
    Publications mathématiques de l'IHÉS, 2017, 126 : 73 - 130
  • [24] CYJAX: A package for Calabi-Yau metrics with JAX
    Gerdes, Mathis
    Krippendorf, Sven
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (02):
  • [25] Machine learned Calabi-Yau metrics and curvature
    Berglund, Per
    Butbaia, Giorgi
    Hubsch, Tristan
    Jejjala, Vishnu
    Pena, Damian Mayorga
    Mishra, Challenger
    Tan, Justin
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 27 (04) : 1107 - 1158
  • [26] UNIQUENESS OF SOME CALABI-YAU METRICS ON Cn
    Szekelyhidi, Gabor
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2020, 30 (04) : 1152 - 1182
  • [27] Smooth asymptotics for collapsing Calabi-Yau metrics
    Hein, Hans-Joachim
    Tosatti, Valentino
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2025, 78 (02) : 382 - 499
  • [28] Neural network approximations for Calabi-Yau metrics
    Jejjala, Vishnu
    Pena, Damian Kaloni Mayorga
    Mishra, Challenger
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
  • [29] Limiting behavior of local Calabi-Yau metrics
    Zharkov, Ilia
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 8 (03) : 395 - 420
  • [30] The Moduli Space of Asymptotically Cylindrical Calabi-Yau Manifolds
    Conlon, Ronan J.
    Mazzeo, Rafe
    Rochon, Frederic
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (03) : 953 - 1009