Brain-computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms

被引:61
|
作者
McFarland, Dennis J. [1 ]
Krusienski, Dean J.
Wolpaw, Jonathan R.
机构
[1] New York State Dept Hlth, Wadsworth Ctr, Lab Nervous Syst Disorders, Albany, NY 12201 USA
[2] SUNY Albany, Albany, NY 12201 USA
关键词
BCI; adaptation; signal processing;
D O I
10.1016/S0079-6123(06)59026-0
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The Wadsworth brain-computer interface (BCI), based on mu and beta sensorimotor rhythms, uses one- and two-dimensional cursor movement tasks and relies on user training. This is a real-time closed-loop system. Signal processing consists of channel selection, spatial filtering, and spectral analysis. Feature translation uses a regression approach and normalization. Adaptation occurs at several points in this process on the basis of different criteria and methods. It can use either feedforward (e.g., estimating the signal mean for normalization) or feedback control (e.g., estimating feature weights for the prediction equation). We view this process as the interaction between a dynamic user and a dynamic system that coadapt over time. Understanding the dynamics of this interaction and optimizing its performance represent a major challenge for BCI research.
引用
收藏
页码:411 / 419
页数:9
相关论文
共 50 条
  • [21] Sensorimotor learning with stereo auditory feedback for a brain-computer interface
    McCreadie, Karl A.
    Coyle, Damien H.
    Prasad, Girijesh
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2013, 51 (03) : 285 - 293
  • [22] Application of t-statistics for processing of EEG signal in brain-computer interface
    Kolodziej, Marcin
    Majkowski, Andrzej
    Rak, Remigiusz J.
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (9A): : 187 - 189
  • [23] Improved signal processing approaches in an offline simulation of a hybrid brain-computer interface
    Brunner, Clemens
    Allison, Brendan Z.
    Krusienski, Dean J.
    Kaiser, Vera
    Mueller-Putz, Gernot R.
    Pfurtscheller, Gert
    Neuper, Christa
    JOURNAL OF NEUROSCIENCE METHODS, 2010, 188 (01) : 165 - 173
  • [24] Automatic Feature Selection for Sensorimotor Rhythms Brain-Computer Interface Fusing Expert and Data-Driven Knowledge
    Sultana, Mushfika
    Perdikis, Serafeim
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 3422 - 3431
  • [25] A comparison between auditory and visual feedback of sensorimotor rhythms (SMR) for a brain-computer interface (BCI) in healthy participants
    Nijboer, Femke
    Gunst, Ingo
    von Hartlieb, Slavica
    McFarland, Dennis
    Birbaumer, Niels
    Kubler, Andrea
    PSYCHOPHYSIOLOGY, 2006, 43 : S71 - S71
  • [26] Asynchronous signal processing for brain-computer interfaces
    Senay, Seda
    Chaparro, Luis F.
    Sun, Mingui
    Sclabassi, Robert
    Akan, Aydin
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2011, 19 (02) : 275 - 289
  • [27] Evolving Signal Processing for Brain-Computer Interfaces
    Makeig, Scott
    Kothe, Christian
    Mullen, Tim
    Bigdely-Shamlo, Nima
    Zhang, Zhilin
    Kreutz-Delgado, Kenneth
    PROCEEDINGS OF THE IEEE, 2012, 100 : 1567 - 1584
  • [28] Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives
    Yuan, Han
    He, Bin
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2014, 61 (05) : 1425 - 1435
  • [29] Signal Detection, Processing and Challenges of Non-invasive Brain-Computer Interface Technology
    Li, Xiaoyuan
    Chen, Feng
    Jia, Yaohui
    Liu, Xinyu
    PROCEEDINGS OF 2019 CHINESE INTELLIGENT AUTOMATION CONFERENCE, 2020, 586 : 60 - 67
  • [30] Sensorimotor Modulation Assessment and Brain-Computer Interface Training in Disorders of Consciousness
    Coyle, Damien
    Stow, Jacqueline
    McCreadie, Karl.
    McElligott, Jacinta
    Carroll, Aine
    ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2015, 96 (03): : S62 - S70