Shape-preserving surfaces with constraints on tension parameters

被引:7
|
作者
Hussain, Malik Zawwar [1 ]
Hussain, Maria [2 ]
Aqeel, Beenish [1 ]
机构
[1] Univ Punjab, Dept Math, Lahore, Pakistan
[2] Women Univ, Lahore Coll, Dept Math, Lahore, Pakistan
关键词
Shape preservation; Rational bi-cubic function; Positivity; Monotonicity; Convexity; Tension parameters; RANGE RESTRICTED INTERPOLATION; SCATTERED DATA; VISUALIZATION; MONOTONICITY; POSITIVITY; SPLINE;
D O I
10.1016/j.amc.2014.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The C-1 rational bi-cubic local interpolation schemes are presented for the shape preservation of convex, monotone and positive surface data. The shape of the surface is controlled locally with the help of eight tension parameters over each rectangular patch. Data dependent constraints are developed on half of the tension parameters to preserve the intrinsic shapes of the surface data. The remaining ones are unconstrained, thus free to be used to obtain the smoothest surface. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:442 / 464
页数:23
相关论文
共 50 条
  • [31] Shape-Preserving Approximation by Space Curves
    Paolo Costantini
    Francesca Pelosi
    Numerical Algorithms, 2001, 27 : 237 - 264
  • [32] SHAPE-PRESERVING APPROXIMATION IN L(P)
    LEVIATAN, D
    OPERSTEIN, V
    CONSTRUCTIVE APPROXIMATION, 1995, 11 (03) : 299 - 319
  • [33] On shape-preserving additions of fuzzy intervals
    Hong, DH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 267 (01) : 369 - 376
  • [34] A note on the existence of shape-preserving projections
    Mupasiri, D.
    Prophet, M. P.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (02) : 573 - 585
  • [35] Comonotone shape-preserving spline histopolation
    Fischer, Malle
    Oja, Peeter
    Trossmann, Helle
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) : 127 - 139
  • [36] Shape-Preserving Interpolation by Cubic Splines
    Volkov, Yu. S.
    Bogdanov, V. V.
    Miroshnichenko, V. L.
    Shevaldin, V. T.
    MATHEMATICAL NOTES, 2010, 88 (5-6) : 798 - 805
  • [37] Shape-Preserving Approximation of Spatial Data
    Paolo Costantini
    Francesca Pelosi
    Advances in Computational Mathematics, 2004, 20 : 25 - 51
  • [38] Shape-preserving interpolation by cubic splines
    Yu. S. Volkov
    V. V. Bogdanov
    V. L. Miroshnichenko
    V. T. Shevaldin
    Mathematical Notes, 2010, 88 : 798 - 805
  • [39] Shape-preserving approximation of spatial data
    Costantini, P
    Pelosi, F
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2004, 20 (1-3) : 25 - 51
  • [40] Shape-preserving approximation by space curves
    Costantini, P
    Pelosi, F
    NUMERICAL ALGORITHMS, 2001, 27 (03) : 237 - 264