On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo

被引:0
|
作者
Chatterji, Niladri S. [1 ]
Flammarion, Nicolas [2 ]
Ma, Yi-An [2 ]
Bartlett, Peter L. [2 ,3 ]
Jordan, Michael I. [2 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
LANGEVIN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We provide convergence guarantees in Wasserstein distance for a variety of variance-reduction methods: SAGA Langevin diffusion, SVRG Langevin diffusion and control-variate under-damped Langevin diffusion. We analyze these methods under a uniform set of assumptions on the log-posterior distribution, assuming it to be smooth, strongly convex and Hessian Lipschitz. This is achieved by a new proof technique combining ideas from finite-sum optimization and the analysis of sampling methods. Our sharp theoretical bounds allow us to identify regimes of interest where each method performs better than the others. Our theory is verified with experiments on real-world and synthetic datasets.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Stochastic gradient Hamiltonian Monte Carlo with variance reduction for Bayesian inference
    Li, Zhize
    Zhang, Tianyi
    Cheng, Shuyu
    Zhu, Jun
    Li, Jian
    [J]. MACHINE LEARNING, 2019, 108 (8-9) : 1701 - 1727
  • [2] Stochastic Gradient Hamiltonian Monte Carlo Methods with Recursive Variance Reduction
    Zou, Difan
    Xu, Pan
    Gu, Quanquan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [3] Stochastic gradient Hamiltonian Monte Carlo with variance reduction for Bayesian inference
    Zhize Li
    Tianyi Zhang
    Shuyu Cheng
    Jun Zhu
    Jian Li
    [J]. Machine Learning, 2019, 108 : 1701 - 1727
  • [4] Variance reduction for Monte Carlo simulation of stochastic environmental models
    Schoenmakers, JGM
    Heemink, AW
    Ponnambalam, K
    Kloeden, PE
    [J]. APPLIED MATHEMATICAL MODELLING, 2002, 26 (08) : 785 - 795
  • [5] Stochastic Gradient Hamiltonian Monte Carlo
    Chen, Tianqi
    Fox, Emily B.
    Guestrin, Carlos
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1683 - 1691
  • [6] Stochastic Gradient Population Monte Carlo
    El-Laham, Yousef
    Bugallo, Monica F.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 46 - 50
  • [7] Adaptive Monte Carlo Variance Reduction with Two-time-scale Stochastic Approximation
    Kawai, Reiichiro
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2007, 13 (03): : 197 - 217
  • [8] Methods for variance reduction in Monte Carlo simulations
    Bixler, Joel N.
    Hokr, Brett H.
    Winblad, Aidan
    Elpers, Gabriel
    Zollars, Byron
    Thomas, Robert J.
    [J]. OPTICAL INTERACTIONS WITH TISSUE AND CELLS XXVII, 2016, 9706
  • [9] Variance reduction in Monte Carlo capacitance extraction
    Batterywala, SH
    Desai, MP
    [J]. 18TH INTERNATIONAL CONFERENCE ON VLSI DESIGN, PROCEEDINGS: POWER AWARE DESIGN OF VLSI SYSTEMS, 2005, : 85 - 90
  • [10] Monte Carlo transition dynamics and variance reduction
    Fitzgerald, M
    Picard, RR
    Silver, RN
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (1-2) : 321 - 345