Elliptic genera of Berglund-Hubsch Landau-Ginzburg orbifolds

被引:0
|
作者
Zhu, Minxian [1 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
关键词
MIRROR SYMMETRY; VERTEX ALGEBRAS;
D O I
10.4310/CNTP.2015.v9.n4.a4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We match the elliptic genus of a Berglund-Hubsch Landau-Ginzburg orbifold with the supertrace of y(J[0]) q(L[0]) on a vertex algebra V-1,V-1. We show that it is a weak Jacobi form and the elliptic genus of one theory is equal (up to a sign) to the elliptic genus of its mirror.
引用
收藏
页码:741 / 761
页数:21
相关论文
共 50 条
  • [31] AN EXAMPLE OF BERGLUND-HUBSCH MIRROR SYMMETRY FOR A CALABI-YAU COMPLETE INTERSECTION
    Filipazzi, Stefano
    Rota, Franco
    MATEMATICHE, 2018, 73 (01): : 191 - 209
  • [32] Non-compact Gepner models, Landau-Ginzburg orbifolds and mirror symmetry
    Ashok, Sujay K.
    Benichou, Raphael
    Troost, Jan
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (01):
  • [33] Landau-Ginzburg skeletons
    Ian C. Davenport
    Ilarion V. Melnikov
    Journal of High Energy Physics, 2017
  • [34] Landau-Ginzburg skeletons
    Davenport, Ian C.
    Melnikov, Ilarion V.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (05):
  • [35] COINCIDENCES BETWEEN CALABI-YAU MANIFOLDS OF BERGLUND-HUBSCH TYPE AND BATYREV POLYTOPES
    Belavin, A. A.
    Belakovskii, M. Yu.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 205 (02) : 1439 - 1455
  • [36] Lattices for Landau–Ginzburg orbifolds
    Wolfgang Ebeling
    Atsushi Takahashi
    Mathematische Zeitschrift, 2020, 296 : 639 - 659
  • [37] Birationality and Landau-Ginzburg Models
    Clarke, Patrick
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (03) : 1241 - 1260
  • [38] Stability of Landau-Ginzburg branes
    Walcher, J
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (08)
  • [39] Small Landau-Ginzburg theories
    Sean M. Gholson
    Ilarion V. Melnikov
    Journal of High Energy Physics, 2019
  • [40] MICROEMULSIONS - A LANDAU-GINZBURG THEORY
    CHEN, K
    JAYAPRAKASH, C
    PANDIT, R
    WENZEL, W
    PHYSICAL REVIEW LETTERS, 1990, 65 (21) : 2736 - 2739