Elliptic genera of Berglund-Hubsch Landau-Ginzburg orbifolds

被引:0
|
作者
Zhu, Minxian [1 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
关键词
MIRROR SYMMETRY; VERTEX ALGEBRAS;
D O I
10.4310/CNTP.2015.v9.n4.a4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We match the elliptic genus of a Berglund-Hubsch Landau-Ginzburg orbifold with the supertrace of y(J[0]) q(L[0]) on a vertex algebra V-1,V-1. We show that it is a weak Jacobi form and the elliptic genus of one theory is equal (up to a sign) to the elliptic genus of its mirror.
引用
收藏
页码:741 / 761
页数:21
相关论文
共 50 条
  • [1] ELLIPTIC GENERA AND THE LANDAU-GINZBURG APPROACH TO N=2 ORBIFOLDS
    DIFRANCESCO, P
    AHARONY, O
    YANKIELOWICZ, S
    NUCLEAR PHYSICS B, 1994, 411 (2-3) : 584 - 608
  • [2] LANDAU-GINZBURG ORBIFOLDS
    INTRILIGATOR, K
    VAFA, C
    NUCLEAR PHYSICS B, 1990, 339 (01) : 95 - 120
  • [3] LANDAU-GINZBURG ORBIFOLDS, MIRROR SYMMETRY AND THE ELLIPTIC GENUS
    BERGLUND, P
    HENNINGSON, M
    NUCLEAR PHYSICS B, 1995, 433 (02) : 311 - 332
  • [4] LANDAU-GINZBURG THEORIES AS ORBIFOLDS
    LYNKER, M
    SCHIMMRIGK, R
    PHYSICS LETTERS B, 1990, 249 (02) : 237 - 242
  • [5] LANDAU-GINZBURG THEORIES AS ORBIFOLDS
    LYNKER, M
    SCHIMMRIGK, R
    PHYSICS LETTERS B, 1991, 268 (01) : 47 - 52
  • [6] Lattices for Landau-Ginzburg orbifolds
    Ebeling, Wolfgang
    Takahashi, Atsushi
    MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) : 639 - 659
  • [7] p-adic Berglund-Hubsch duality
    Aldi, Marco
    Perunicic, Andrija
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 19 (05) : 1115 - 1139
  • [8] ON THE POINCARE POLYNOMIALS FOR LANDAU-GINZBURG ORBIFOLDS
    SATO, H
    MODERN PHYSICS LETTERS A, 1994, 9 (10) : 885 - 893
  • [9] Landau-Ginzburg Orbifolds with Discrete Torsion
    Kreuzer, M.
    Skarke, H.
    Magnetic Resonance in Chemistry, 1994, 32 (12-14)
  • [10] Hodge Diamonds of the Landau-Ginzburg Orbifolds
    Basalaev, Alexey
    Ionov, Andrei
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20