DSGE Models with observation-driven time-varying volatility

被引:4
|
作者
Angelini, Giovanni [1 ]
Gorgi, Paolo [2 ]
机构
[1] Univ Bologna, Dept Econ, Bologna, Italy
[2] Vrije Univ Amsterdam, Dept Econometr & Operat Res, Amsterdam, Netherlands
关键词
DSGE models; Score-driven models; Time-varying parameters;
D O I
10.1016/j.econlet.2018.07.023
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper proposes a novel approach to introduce time-variation in the variances of the structural shocks of DSGE models. The variances are allowed to evolve over time via an observation-driven updating equation. The estimation of the resulting DSGE model can be easily performed by maximum likelihood without the need of time-consuming simulation-based methods. An empirical application to a DSGE model with time-varying volatility for structural shocks shows a significant improvement in the accuracy of density forecasts. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 171
页数:3
相关论文
共 50 条
  • [41] A novel time-varying coefficient Poisson difference model driven by observation
    Liu, Ye
    Wang, Dehui
    [J]. STAT, 2024, 13 (03):
  • [42] Observation-driven exponential smoothing
    Karlis, Dimitris
    Pedeli, Xanthi
    Varin, Cristiano
    [J]. STAT, 2023, 12 (01):
  • [43] Conditional maximum likelihood estimation for a class of observation-driven time series models for count data
    Cui, Yunwei
    Zheng, Qi
    [J]. STATISTICS & PROBABILITY LETTERS, 2017, 123 : 193 - 201
  • [44] Stochastic volatility and DSGE models
    Andreasen, Martin M.
    [J]. ECONOMICS LETTERS, 2010, 108 (01) : 7 - 9
  • [45] Linear time-varying regression with Copula-DCC-GARCH models for volatility
    Kim, Jong-Min
    Jung, Hojin
    [J]. ECONOMICS LETTERS, 2016, 145 : 262 - 265
  • [46] Bayesian changepoint and time-varying parameter learning in regime switching volatility models
    Yumlu, M. Serdar
    Gurgen, Fikret S.
    Cemgil, A. Taylan
    Okay, Nesrin
    [J]. DIGITAL SIGNAL PROCESSING, 2015, 40 : 198 - 212
  • [47] Calibrating the Italian Smile with Time-Varying Volatility and Heavy-Tailed Models
    Michele Leonardo Bianchi
    Svetlozar T. Rachev
    Frank J. Fabozzi
    [J]. Computational Economics, 2018, 51 : 339 - 378
  • [48] The glarma Package for Observation-Driven Time Series Regression of Counts
    Dunsmuir, William T. M.
    Scott, David J.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (07): : 1 - 36
  • [49] Semiparametric Bayesian inference for time-varying parameter regression models with stochastic volatility
    Dimitrakopoulos, Stefanos
    [J]. ECONOMICS LETTERS, 2017, 150 : 10 - 14
  • [50] Calibrating the Italian Smile with Time-Varying Volatility and Heavy-Tailed Models
    Bianchi, Michele Leonardo
    Rachev, Svetlozar T.
    Fabozzi, Frank J.
    [J]. COMPUTATIONAL ECONOMICS, 2018, 51 (03) : 339 - 378