The sixth and eighth moments of Fourier coefficients of cusp forms

被引:31
|
作者
Lue, Guangshi [1 ]
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Fourier coefficients of cusp forms; Symmetric power L-function; POWER L-FUNCTIONS; GL(2); 4TH;
D O I
10.1016/j.jnt.2009.01.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda(n) be the nth normalized Fourier coefficient of a holomorphic Hecke eigencuspform f(z) of even integral weight k for the full modular group. In this paper we are able to prove the following results. (i) For any epsilon > 0, we have Sigma(n <= x) lambda(6)(n) = xP(1)(log x) + O(f,epsilon)(x(31/32+epsilon)), where P(1)(x) is a polynomial of degree 4. (ii) For any epsilon > 0, we have Sigma(n <= x)lambda(8)(n) = xP(2)(log x) + O(f,epsilon)(x(127/128+epsilon)), where P(2)(x) is a polynomial of degree 13 (C) 2009 Elsevier Inc All rights reserved
引用
收藏
页码:2790 / 2800
页数:11
相关论文
共 50 条