The novel soliton solutions for the conformable perturbed nonlinear Schrodinger equation

被引:57
|
作者
Yepez-Martinez, Huitzilin [1 ]
Pashrashid, Arash [2 ]
Francisco Gomez-Aguilar, Jose [3 ]
Akinyemi, Lanre [4 ]
Rezazadeh, Hadi [5 ]
机构
[1] Univ Autonoma Ciudad Mexico, Prolongac San Isidro 151, Mexico City 09790, DF, Mexico
[2] Sharif Univ Technol Tehran, Dept Comp Engn, Tehran, Iran
[3] CONACyT Ctr Nacl Invest & Desarrollo Tecnol Tecno, Nacl Mexico Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[4] Lafayette Coll, Dept Math, Easton, PA 18042 USA
[5] Amol Univ Special Modern Technol, Fac Engn Technol, Amol, Iran
来源
MODERN PHYSICS LETTERS B | 2022年 / 36卷 / 08期
关键词
Perturbed nonlinear Schrodinger equation; conformable derivative; quadratic-cubic law; quadratic-quartic-quintic law; cubic-quintic-septic law; sub-equation method; TRAVELING-WAVE SOLUTIONS; OPTICAL SOLITONS; SYSTEM; SYMMETRIES; MODELS;
D O I
10.1142/S0217984921505977
中图分类号
O59 [应用物理学];
学科分类号
摘要
The sub-equation method is implemented to construct exact solutions for the conformable perturbed nonlinear Schrodinger equation. In this paper, we consider three different types of nonlinear perturbations: The quadratic-cubic law, the quadratic-quartic-quintic law, and the cubic-quintic-septic law. The properties of the conformable derivative are discussed and applied with the help of a suitable wave transform that converts the governing model to a nonlinear ordinary differential equation. Furthermore, the order of the expected polynomial-type solution is obtained using the homogeneous balancing approach. Dark and singular soliton solutions are derived.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Bifurcation, phase plane analysis and exact soliton solutions in the nonlinear Schrodinger equation with Atangana's conformable derivative
    Alam, Md. Nur
    Iqbal, Mujahid
    Hassan, Mohammad
    Fayz-Al-Asad, Md.
    Hossain, Muhammad Sajjad
    Tunc, Cemil
    CHAOS SOLITONS & FRACTALS, 2024, 182
  • [32] Exact Solutions and Dynamic Properties of the Perturbed Nonlinear Schrodinger Equation with Conformable Fractional Derivatives Arising in Nanooptical Fibers
    Bao, Shuxin
    Chen, Shuangqing
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [33] On the degenerate soliton solutions of the focusing nonlinear Schrodinger equation
    Li, Sitai
    Biondini, Gino
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (03)
  • [34] Soliton solutions of the nonlinear Schrodinger equation with defect conditions
    Gruner, K. T.
    NONLINEARITY, 2021, 34 (09) : 6017 - 6049
  • [35] Exact Soliton Solutions for Nonlinear Perturbed Schrodinger Equations with Nonlinear Optical Media
    Gepreel, Khaled A.
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 21
  • [36] Improved perturbed nonlinear Schrodinger dynamical equation with type of Kerr law nonlinearity with optical soliton solutions
    Seadawy, Aly R.
    Cheemaa, Nadia
    PHYSICA SCRIPTA, 2020, 95 (06)
  • [37] Novel dispersive soliton solutions to a fractional nonlinear Schrodinger equation related with ultrashort pulses
    Ay, Nursena Gunhan
    Yasar, Emrullah
    PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (03):
  • [38] Soliton solutions and soliton interactions for the coupled nonlinear Schrodinger equation with varying coefficients
    Tian, JP
    Li, JH
    Kang, LS
    Zhou, GS
    PHYSICA SCRIPTA, 2005, 72 (05) : 394 - 398
  • [39] Asymptotic soliton train solutions of the defocusing nonlinear Schrodinger equation
    Kamchatnov, AM
    Kraenkel, RA
    Umarov, BA
    PHYSICAL REVIEW E, 2002, 66 (03):
  • [40] Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schrodinger Equation
    Wang, Bao
    Zhang, Zhao
    Li, Biao
    CHINESE PHYSICS LETTERS, 2020, 37 (03)