Dynamic Load Balancing for Congestion Avoidance using Adaptive Neuro-Fuzzy Inference System in Mobile Communication Network

被引:0
|
作者
Collins, David [1 ]
Chukwuchekwa, Nkwachukwu [1 ]
Ezema, Longinus Sunday [1 ]
机构
[1] Fed Univ Technol Owerri, Dept Elect & Elect Engn, Owerri, Imo State, Nigeria
关键词
ANFIS; GSM; handover mechanism; mobile communication; network congestion;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Network congestion is one of the key challenges to mobile communication services. This is because of rapid and constant growth in the mobile subscriber base that has led to an increase in network traffic. The more the network traffic the more economic opportunity from the business perspective for the operators and the challenges it poses on the network. If not followed by network capacity expansion it will defiantly pose a serious network issue like network congestion that leads to call drop and poor Quality of Service (QoS). Many research works adopted handover mechanism as a means of reducing congestion in a network. However, the decision on when to initiate a handover, which cell to receive the Mobile Station (MS) and how to ensure that the QoS requirements are maintained are the paramount research questions that must be resolved. Therefore, a handover process using soft computing in the Adaptive Neuro-Fuzzy Inference System (ANFIS) to ensure balanced traffic load distribution in-network and reduce the probability of congestion is proposed. The study allows simultaneous evaluation of three major network parameters Received Signal Strength (RSS), Received Signal Quality (RxQual) and network traffic using ANFIS to improve system performance. The results show that when the Hysteresis value approaches 6 the handover processes are triggered. The hysteresis value of the concerned MS with neighbouring cells is considered to determine the most suitable cell to handover. This work will be able to achieve dynamic load balancing, congestion avoidance and avoided the 'ping pong' effect that is often an issue with handover with less computation. At the end customer satisfaction will be achieve Quality of experience (QoE).
引用
收藏
页码:183 / 193
页数:11
相关论文
共 50 条
  • [41] Organizational Risk Assessment using Adaptive Neuro-Fuzzy Inference System
    Jassbi, J.
    Khanmohammadi, S.
    PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 1217 - 1222
  • [42] ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR END MILLING
    Markopoulos, Angelos P.
    Georgiopoulos, Sotirios
    Kinigalakis, Myron
    Manolakos, Dimitrios E.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2016, 11 (09) : 1234 - 1248
  • [43] Adaptive neuro-fuzzy inference system for modelling and control
    Amaral, TGB
    Crisóstomo, MM
    Pires, VF
    2002 FIRST INTERNATIONAL IEEE SYMPOSIUM INTELLIGENT SYSTEMS, VOL 1, PROCEEDINGS, 2002, : 67 - 72
  • [44] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Ulker Guner Bacanli
    Mahmut Firat
    Fatih Dikbas
    Stochastic Environmental Research and Risk Assessment, 2009, 23 : 1143 - 1154
  • [45] Adaptive Neuro-Fuzzy Inference System for Financial Evaluation
    Orhei, Dragomir
    VISION 2020: SUSTAINABLE GROWTH, ECONOMIC DEVELOPMENT, AND GLOBAL COMPETITIVENESS, VOLS 1-5, 2014, : 241 - 245
  • [46] Adaptive Neuro-Fuzzy Inference System for Classification of Texts
    Kamil, Aida-zade
    Rustamov, Samir
    Clements, Mark A.
    Mustafayev, Elshan
    RECENT DEVELOPMENTS AND THE NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2018, 361 : 63 - 70
  • [47] Edge Detection by Adaptive Neuro-Fuzzy Inference System
    Zhang, Lei
    Xiao, Mei
    Ma, Jian
    Song, Hongxun
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 1774 - 1777
  • [48] Gear fault identification using artificial neural network and adaptive neuro-fuzzy inference system
    Soleimani, Ali
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 2562 - 2569
  • [49] Hysteresis Modeling with Adaptive Neuro-Fuzzy Inference System
    Mordjaoui, M.
    Chabane, M.
    Boudjema, B.
    Daira, R.
    FERROELECTRICS, 2008, 372 : 54 - 65
  • [50] Application of Adaptive Neuro-Fuzzy Inference System for Interference Management in Heterogeneous Network
    Palanisamy, Padmaloshani
    Sivaraj, Nirmala
    ETRI JOURNAL, 2018, 40 (03) : 318 - 329