Deep Convolutional Neural Network for Inverse Problems in Imaging

被引:1582
|
作者
Jin, Kyong Hwan [1 ]
McCann, Michael T. [1 ,2 ]
Froustey, Emmanuel [1 ,3 ]
Unser, Michael [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Biomed Imaging Grp, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Ctr Biomed Imaging, Signal Proc Core, CH-1015 Lausanne, Switzerland
[3] Dassault Aviat, F-92210 St Cloud, France
关键词
Image restoration; image reconstruction; tomography; computed tomography; magnetic resonance imaging; biomedical signal processing; biomedical imaging; reconstruction algorithms; RAY CT RECONSTRUCTION; THRESHOLDING ALGORITHM; TOMOGRAPHY; TRANSFORM; SHRINKAGE; MRI;
D O I
10.1109/TIP.2017.2713099
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyperparameter selection. The starting point of this paper is the observation that unrolled iterative methods have the form of a CNN (filtering followed by pointwise non-linearity) when the normal operator (H* H, where H* is the adjoint of the forward imaging operator, H) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a 512 x 512 image on the GPU.
引用
收藏
页码:4509 / 4522
页数:14
相关论文
共 50 条
  • [41] DEEP CONVOLUTIONAL NEURAL NETWORK FOR MANGROVE MAPPING
    Iovan, Corina
    Kulbicki, Michel
    Mermet, Eric
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1969 - 1972
  • [42] Deep learning with convolutional neural network in radiology
    Yasaka, Koichiro
    Akai, Hiroyuki
    Kunimatsu, Akira
    Kiryu, Shigeru
    Abe, Osamu
    JAPANESE JOURNAL OF RADIOLOGY, 2018, 36 (04) : 257 - 272
  • [43] Deep learning with convolutional neural network in radiology
    Koichiro Yasaka
    Hiroyuki Akai
    Akira Kunimatsu
    Shigeru Kiryu
    Osamu Abe
    Japanese Journal of Radiology, 2018, 36 : 257 - 272
  • [44] Military Surveillance with Deep Convolutional Neural Network
    Gupta, Anishi
    Gupta, Uma
    2018 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT - 2018), 2018, : 1147 - 1152
  • [45] Deep Convolutional Neural Network for Fog Detection
    Zhang, Jun
    Lu, Hui
    Xia, Yi
    Han, Ting-Ting
    Miao, Kai-Chao
    Yao, Ye-Qing
    Liu, Cheng-Xiao
    Zhou, Jian-Ping
    Chen, Peng
    Wang, Bing
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, PT II, 2018, 10955 : 1 - 10
  • [46] Deep Convolutional Neural Network for Fire Detection
    Gotthans, Jakub
    Gotthans, Tomas
    Marsalek, Roman
    PROCEEDINGS OF THE 2020 30TH INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA), 2020, : 128 - 133
  • [47] Relative Attributes with Deep Convolutional Neural Network
    Kim, Dong-Jin
    Yoo, Donggeun
    Im, Sunghoon
    Kim, Namil
    Sirinukulwattana, Tharatch
    Kweon, In So
    2015 12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2015, : 157 - 158
  • [48] Deep Convolutional Generalized Classifier Neural Network
    Sarigul, Mehmet
    Ozyildirim, B. Melis
    Avci, Mutlu
    NEURAL PROCESSING LETTERS, 2020, 51 (03) : 2839 - 2854
  • [49] Breeds Classification with Deep Convolutional Neural Network
    Zhang, Yicheng
    Gao, Jipeng
    Zhou, Haolin
    ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2018, : 145 - 151
  • [50] Numerosity representation in a deep convolutional neural network
    Zhou, Cihua
    Xu, Wei
    Liu, Yujie
    Xue, Zhichao
    Chen, Rui
    Zhou, Ke
    Liu, Jia
    JOURNAL OF PACIFIC RIM PSYCHOLOGY, 2021, 15