Travelling Wave in the Generalized Kuramoto Model with Inertia

被引:1
|
作者
Yuan, Di [1 ]
Zhao, Dong-Qiu [1 ]
Xiao, Yi [2 ]
Zhang, Ying-Xin [3 ]
机构
[1] Anyang Normal Univ, Sch Phys & Elect Engn, Anyang 455000, Peoples R China
[2] Huazhong Univ Sci & Technol, Dept Phys, Wuhan 430074, Peoples R China
[3] Henan Vocat Coll Nursing, Students Affairs Div, Anyang 455000, Peoples R China
基金
中国国家自然科学基金;
关键词
SYNCHRONIZATION; OSCILLATORS; NETWORKS; POPULATION;
D O I
10.1088/0256-307X/33/5/050502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamics of the generalized Kuramoto model with inertia, in which oscillators with positive coupling strength are conformists and oscillators with negative coupling strength are contrarians. By numerically simulating the model, we find that the model supports a modulated travelling wave state except for already displayed travelling wave states and.. state in previous literature. The modulated travelling wave state may be characterized by the phase distributions of oscillators. Finally, the modulated travelling wave state and the travelling wave state of the model in the parameter space are presented.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Improved numerical scheme for the generalized Kuramoto model
    Lee, Hyun Keun
    Hong, Hyunsuk
    Yeo, Joonhyun
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (04):
  • [22] On wave structures described by the generalized Kuramoto-Sivashinsky equation
    Kudryashov, Nikolay A.
    APPLIED MATHEMATICS LETTERS, 2015, 49 : 84 - 90
  • [23] Cardinality of Collisions in Asymptotic Phase-Locking for the Kuramoto Model with Inertia
    Cho, Hangjun
    Dong, Jiu-Gang
    Ha, Seung-Yeal
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (02): : 1472 - 1501
  • [24] Low-dimensional behavior of Kuramoto model with inertia in complex networks
    Ji, Peng
    Peron, Thomas K. D. M.
    Rodrigues, Francisco A.
    Kurths, Juergen
    SCIENTIFIC REPORTS, 2014, 4
  • [25] Low-dimensional behavior of Kuramoto model with inertia in complex networks
    Peng Ji
    Thomas K. D. M. Peron
    Francisco A. Rodrigues
    Jürgen Kurths
    Scientific Reports, 4
  • [26] Low-dimensional behavior of a Kuramoto model with inertia and Hebbian learning
    Ruangkriengsin, Tachin
    Porter, Mason A.
    CHAOS, 2023, 33 (12)
  • [27] Prolonged hysteresis in the Kuramoto model with inertia and higher-order interactions
    Sabhahit, Narayan G.
    Khurd, Akanksha S.
    Jalan, Sarika
    PHYSICAL REVIEW E, 2024, 109 (02)
  • [28] Exact travelling wave solutions for the generalized shallow water wave equation
    Elwakil, SA
    El-labany, SK
    Zahran, MA
    Sabry, R
    CHAOS SOLITONS & FRACTALS, 2003, 17 (01) : 121 - 126
  • [29] Travelling wave solutions to the generalized stochastic KdV equation
    Wei, Cai-Min
    Wang, Jian-Jun
    CHAOS SOLITONS & FRACTALS, 2008, 37 (03) : 733 - 740
  • [30] Travelling wave solutions for a generalized double dispersion equation
    Bruzon, M. S.
    Gandarias, M. L.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E2109 - E2117