Travelling Wave in the Generalized Kuramoto Model with Inertia

被引:1
|
作者
Yuan, Di [1 ]
Zhao, Dong-Qiu [1 ]
Xiao, Yi [2 ]
Zhang, Ying-Xin [3 ]
机构
[1] Anyang Normal Univ, Sch Phys & Elect Engn, Anyang 455000, Peoples R China
[2] Huazhong Univ Sci & Technol, Dept Phys, Wuhan 430074, Peoples R China
[3] Henan Vocat Coll Nursing, Students Affairs Div, Anyang 455000, Peoples R China
基金
中国国家自然科学基金;
关键词
SYNCHRONIZATION; OSCILLATORS; NETWORKS; POPULATION;
D O I
10.1088/0256-307X/33/5/050502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamics of the generalized Kuramoto model with inertia, in which oscillators with positive coupling strength are conformists and oscillators with negative coupling strength are contrarians. By numerically simulating the model, we find that the model supports a modulated travelling wave state except for already displayed travelling wave states and.. state in previous literature. The modulated travelling wave state may be characterized by the phase distributions of oscillators. Finally, the modulated travelling wave state and the travelling wave state of the model in the parameter space are presented.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Travelling Wave in the Generalized Kuramoto Model with Inertia
    袁地
    赵冬秋
    肖奕
    张颖新
    Chinese Physics Letters, 2016, (05) : 22 - 25
  • [2] Travelling Wave in the Generalized Kuramoto Model with Inertia
    袁地
    赵冬秋
    肖奕
    张颖新
    Chinese Physics Letters, 2016, 33 (05) : 22 - 25
  • [3] Exact travelling wave solutions to the generalized Kuramoto-Sivashinsky equation
    Li, CP
    Chen, GR
    Zhao, SC
    LATIN AMERICAN APPLIED RESEARCH, 2004, 34 (01) : 65 - 68
  • [4] Hysteretic transitions in the Kuramoto model with inertia
    Olmi, Simona
    Navas, Adrian
    Boccaletti, Stefano
    Torcini, Alessandro
    PHYSICAL REVIEW E, 2014, 90 (04):
  • [5] Bifurcations and Patterns in the Kuramoto Model with Inertia
    Hayato Chiba
    Georgi S. Medvedev
    Matthew S. Mizuhara
    Journal of Nonlinear Science, 2023, 33
  • [6] Bifurcations and Patterns in the Kuramoto Model with Inertia
    Chiba, Hayato
    Medvedev, Georgi S.
    Mizuhara, Matthew S.
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (05)
  • [7] Travelling wave solutions to the Kuramoto-Sivashinsky equation
    Nickel, J.
    CHAOS SOLITONS & FRACTALS, 2007, 33 (04) : 1376 - 1382
  • [8] Penrose method for Kuramoto model with inertia and noise
    Alexandrov, Artem
    Gorsky, Alexander
    CHAOS SOLITONS & FRACTALS, 2024, 183
  • [9] REMARKS ON THE NONLINEAR STABILITY OF THE KURAMOTO MODEL WITH INERTIA
    Choi, Young-Pil
    Ha, Seung-Yeal
    Noh, Se Eun
    QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (02) : 391 - 399
  • [10] STABILITY AND BIFURCATION OF MIXING IN THE KURAMOTO MODEL WITH INERTIA
    Chiba, Hayato
    Medvedev, Georgi S.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (02) : 1797 - 1819