From triangulated categories to cluster algebras II

被引:159
|
作者
Caldero, Philippe [1 ]
Keller, Bernhard
机构
[1] Univ Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France
[2] Univ Paris 7 Denis Diderot, Inst Math, F-75251 Paris 05, France
关键词
D O I
10.1016/j.ansens.2006.09.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the acyclic case, we establish a one-to-one correspondence between the tilting objects of the cluster category and the clusters of the associated cluster algebra. This correspondence enables us to solve conjectures on cluster algebras. We prove a multiplicativity theorem, a denominator theorem, and some conjectures on properties of the mutation graph. As in the previous article, the proofs rely on the Calabi-Yau property of the cluster category. (c) 2006 Elsevier Masson SAS.
引用
收藏
页码:983 / 1009
页数:27
相关论文
共 50 条
  • [41] Cluster categories of formal DG algebras and singularity categories
    Hanihara, Norihiro
    FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [42] A GEOMETRIC INTERPRETATION OF THE TRIANGULATED STRUCTURE OF m-CLUSTER CATEGORIES
    Lamberti, Lisa
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (03) : 962 - 983
  • [43] GROTHENDIECK GROUPS OF TRIANGULATED CATEGORIES VIA CLUSTER TILTING SUBCATEGORIES
    Fedele, Francesca
    NAGOYA MATHEMATICAL JOURNAL, 2021, 244 : 204 - 231
  • [44] SUBFACTOR CATEGORIES OF TRIANGULATED CATEGORIES
    Xu, Jinde
    Zhou, Panyue
    Ouyang, Baiyu
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (12) : 5168 - 5182
  • [45] Triangulated functors and localizations of triangulated categories
    TRIANGULATED CATEGORIES, 2001, (148): : 73 - 101
  • [46] On rooted cluster morphisms and cluster structures in 2-Calabi-Yau triangulated categories
    Chang, Wen
    Zhu, Bin
    JOURNAL OF ALGEBRA, 2016, 458 : 387 - 421
  • [47] LOCALIZATION OF TRIANGULATED CATEGORIES AND DERIVED CATEGORIES
    MIYACHI, J
    JOURNAL OF ALGEBRA, 1991, 141 (02) : 463 - 483
  • [48] Stratifying triangulated categories
    Benson, Dave
    Iyengar, Srikanth B.
    Krause, Henning
    JOURNAL OF TOPOLOGY, 2011, 4 (03) : 641 - 666
  • [49] Descent in triangulated categories
    Paul Balmer
    Mathematische Annalen, 2012, 353 : 109 - 125
  • [50] Quotient triangulated categories
    Chen, Xiao-Wu
    Zhang, Pu
    MANUSCRIPTA MATHEMATICA, 2007, 123 (02) : 167 - 183