Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes

被引:145
|
作者
Pan, Zhongbin [1 ]
Yao, Lingmin [2 ]
Zhai, Jiwei [1 ]
Shen, Bo [1 ]
Wang, Haitao [1 ]
机构
[1] Tongji Univ, Key Lab Adv Civil Engn Mat, Minist Educ, Sch Mat Sci & Engn, 4800 Caoan Rd, Shanghai 201804, Peoples R China
[2] Guangzhou Univ, Sch Phys & Elect Engn, Guangzhou 510006, Guangdong, Peoples R China
关键词
Nano composites; Electrical properties; Interface; Electro-spinning; Coating; POLY(VINYLIDENE FLUORIDE); FAST DISCHARGE; COMPOSITES; NANOFIBERS; CAPACITORS; STORAGE; PERMITTIVITY; PERFORMANCE; RELAXATION; FILMS;
D O I
10.1016/j.compscitech.2017.05.004
中图分类号
TB33 [复合材料];
学科分类号
摘要
Flexible dielectric polymeric films are highly desirable materials with potential applications in power conditioning equipment and pulsed-plasma thrusters due to their high dielectric constant, low dielectric loss, and fast energy uptake and delivery. In this work, 1-3 type nanocomposites combining BaTiO3 nanotubes (BT NTs) and poly(vinylidene fluoride) (PVDF) were prepared by a solution cast method. The BT NTs were synthesized by facile coaxial electrospinning and were coated with a dense and robust dopamine layer, which effectively improved the filler-matrix distributional homogeneity and compatibility. The 10.8 vol% BT-DA NTs/PVDF nanocomposites possessed an excellent dielectric constant of 47.05, which is approximately 569% greater that of the pristine PVDF (8.26) and 150%-350% higher than that of the other PVDF nanocomposites loaded with similar ceramic filler contents, e.g., nanoparticles, nano wires, and nanofibers. The highest energy density of 7.03 J cm(-3) at a relatively low field of 330 MV m(-1) was obtained via small loaded of the fillers, which is approximately 625% greater than for biaxially oriented polypropylenes (BOPP) (1.2 J cm(-3) at the field of 640 MV m(-1)). The approach employed in this study may be further applied to the fabrication of similar polymeric nanocomposites for next-generation electronic components. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:30 / 38
页数:9
相关论文
共 50 条
  • [31] Effect of BaTiO3 Nanofillers on the Energy Storage Performance of Polymer Nanocomposites
    Yadav, Anju
    Yadav, Dinesh Kumar
    Mishra, Jitendra Kumar
    Sahu, Rajesh
    Jain, S. K.
    Dixit, Shalini
    Agarwal, Garima
    Jakhar, Narendra
    Tripathi, Balram
    MACROMOLECULAR SYMPOSIA, 2021, 399 (01)
  • [32] Chemically bonding BaTiO3 nanoparticles in highly filled polymer nanocomposites for greatly enhanced dielectric properties
    Chen, Rui-Chao
    Zhang, Quan-Ping
    Ke, Kai
    Sun, Nan
    Xu, Wei-Di
    Liu, Dong-Liang
    Yang, Wenbin
    Li, Yin-Tao
    Zhou, Yuan-Lin
    Yang, Ming-Bo
    Yuan, Jinkai
    Yang, Wei
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (26) : 8786 - 8795
  • [33] 3D printing of anisotropic polymer nanocomposites with aligned BaTiO3 nanowires for enhanced energy density
    Luo, Hang
    Zhou, Xuefan
    Guo, Ru
    Yuan, Xi
    Chen, Hehao
    Abrahams, Isaac
    Zhang, Dou
    MATERIALS ADVANCES, 2020, 1 (01): : 14 - 19
  • [34] Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires
    Xie, Bing
    Zhang, Haibo
    Zhang, Qi
    Zang, Jiadong
    Yang, Chao
    Wang, Qingping
    Li, Ming-Yu
    Jiang, Shenglin
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (13) : 6070 - 6078
  • [35] Nanocomposites of Surface-Modified BaTiO3 Nanoparticles Filled Ferroelectric Polymer with Enhanced Energy Density
    Yu, Ke
    Niu, Yujuan
    Zhou, Yongcun
    Bai, Yuanyuan
    Wang, Hong
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (08) : 2519 - 2524
  • [36] High discharged energy density of polymer nanocomposites induced by Nd-doped BaTiO3 nanoparticles
    Wang, Jing
    Hu, Juntao
    Yang, Lu
    Zhu, Kongjun
    Li, Bao-Wen
    Sun, Qiaomei
    Li, Yanxin
    Qiu, Jinhao
    JOURNAL OF MATERIOMICS, 2018, 4 (01) : 44 - 50
  • [37] Nanocomposites of surface-modified BaTiO3 nanoparticles filled ferroelectric polymer with enhanced energy density
    Wang, H. (hwang@mail.xjtu.edu.cn), 1600, Blackwell Publishing Inc., Postfach 10 11 61, 69451 Weinheim, Boschstrabe 12, 69469 Weinheim, Deutschland, 69469, Germany (96):
  • [38] Significantly enhanced ferroelectric and dielectric properties in BaTiO3/LaNiO3 superlattices
    Lin, Jun Liang
    Wang, Zhan Jie
    Zhao, Xiang
    Zhang, Zhi Dong
    SCRIPTA MATERIALIA, 2020, 179 (179) : 102 - 106
  • [39] The role of epoxy matrix occlusions within BaTiO3 nanoparticles on the dielectric properties of functionalized BaTiO3/epoxy nanocomposites
    Thi Tuyet Mai Phan
    Ngoc Chau Chu
    Van Boi Luu
    Hoan Nguyen Xuan
    Martin, Isabelle
    Carriere, Pascal
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2016, 90 : 528 - 535
  • [40] Improving Dielectric Properties of BaTiO3/Ferroelectric Polymer Composites by Employing Surface Hydroxylated BaTiO3 Nanoparticles
    Zhou, Tao
    Zha, Jun-Wei
    Cui, Rui-Yao
    Fan, Ben-Hui
    Yuan, Jin-Kai
    Dang, Zhi-Min
    ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (07) : 2184 - 2188