Entanglement renormalization and boundary critical phenomena

被引:10
|
作者
Silvi, P. [1 ]
Giovannetti, V. [2 ,3 ]
Calabrese, P. [4 ,5 ]
Santoro, G. E. [1 ,6 ,7 ]
Fazio, R. [2 ,3 ,8 ]
机构
[1] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy
[2] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[3] CNR INFM, I-56126 Pisa, Italy
[4] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[5] Ist Nazl Fis Nucl, I-56127 Pisa, Italy
[6] CNR INFM Democritos Natl Simulat Ctr, I-34014 Trieste, Italy
[7] Abdus Salaam Int Ctr Theoret Phys, I-34014 Trieste, Italy
[8] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
density matrix renormalization group calculations; other numerical approaches; entanglement in extended quantum systems (theory); QUANTUM; STATES; CHAINS; SLE;
D O I
10.1088/1742-5468/2010/03/L03001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper we study interacting quantum systems defined on a one-dimensional lattice with arbitrary boundary conditions, and employ the multiscale entanglement renormalization ansatz to study boundary critical phenomena. We show how to compute the average of any local operator as a function of the distance from the boundary as well as the deviation of the ground state energy due to the presence of the boundary. Furthermore, assuming a uniform tensor structure, we show that the multiscale entanglement renormalization ansatz implies an exact relation between bulk and boundary critical exponents known to exist for boundary critical systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] DIFFERENTIAL RENORMALIZATION-GROUP GENERATORS FOR STATIC AND DYNAMIC CRITICAL PHENOMENA
    CHANG, TS
    VVEDENSKY, DD
    NICOLL, JF
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 217 (06): : 279 - 360
  • [42] Dynamic and Renormalization-Group Extensions of the Landau Theory of Critical Phenomena
    Grmela, Miroslav
    Klika, Vaclav
    Pavelk, Michal
    ENTROPY, 2020, 22 (09)
  • [43] APPLICATION OF THE REAL-SPACE RENORMALIZATION GROUP TO DYNAMIC CRITICAL PHENOMENA
    VALLS, OT
    NOLAN, MJ
    MAZENKO, GF
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (03): : 459 - 459
  • [44] APPLICATION OF REAL-SPACE RENORMALIZATION GROUP TO DYNAMIC CRITICAL PHENOMENA
    MAZENKO, GF
    NOLAN, MJ
    VALLS, OT
    PHYSICAL REVIEW LETTERS, 1978, 41 (07) : 500 - 503
  • [45] Exact renormalization group equations and the field theoretical approach to critical phenomena
    Bagnuls, C
    Bervillier, C
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (11): : 1825 - 1845
  • [46] DEPENDENCE OF THE RENORMALIZATION-GROUP DESCRIPTION OF CRITICAL PHENOMENA ON THE GROUP PARAMETER
    KHOLOPOV, EV
    FIZIKA NIZKIKH TEMPERATUR, 1985, 11 (05): : 534 - 536
  • [47] Homogeneous multiscale entanglement renormalization ansatz tensor networks for quantum critical systems
    Rizzi, M.
    Montangero, S.
    Silvi, P.
    Giovannetti, V.
    Fazio, Rosario
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [48] Entanglement entropy and boundary renormalization group flow: Exact results in the Ising universality class
    Cornfeld, Eyal
    Sela, Eran
    PHYSICAL REVIEW B, 2017, 96 (07)
  • [49] Entanglement renormalization and integral geometry
    Huang, Xing
    Lin, Feng-Li
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (12): : 1 - 35
  • [50] Entanglement renormalization and gauge symmetry
    Tagliacozzo, L.
    Vidal, G.
    PHYSICAL REVIEW B, 2011, 83 (11)