Proximity Histidine Labeling by Umpolung Strategy Using Singlet Oxygen

被引:66
|
作者
Nakane, Keita [1 ]
Sato, Shinichi [1 ,4 ]
Niwa, Tatsuya [2 ]
Tsushima, Michihiko [3 ]
Tomoshige, Shusuke [1 ]
Taguchi, Hideki [2 ]
Ishikawa, Minoru [1 ]
Nakamura, Hiroyuki [3 ]
机构
[1] Tohoku Univ, Grad Sch Life Sci, Aoba Ku, Sendai, Miyagi 9808577, Japan
[2] Tokyo Inst Technol, Inst Innovat Res, Cell Biol Ctr, Yokohama, Kanagawa 2268503, Japan
[3] Tokyo Inst Technol, Inst Innovat Res, Lab Chem & Life Sci, Yokohama, Kanagawa 2268503, Japan
[4] Tohoku Univ, Frontier Res Inst Interdisciplinary Sci, Aoba Ku, Sendai, Miyagi 9808577, Japan
关键词
TARGET PROTEIN; OXIDATION; DISCOVERY;
D O I
10.1021/jacs.1c01626
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
While electrophilic reagents for histidine labeling have been developed, we report an umpolung strategy for histidine functionalization. A nucleophilic small molecule, 1-methyl-4-arylurazole, selectively labeled histidine under singlet oxygen (O-1(2)) generation conditions. Rapid histidine labeling can be applied for instant protein labeling. Utilizing the short diffusion distance of O-1(2) and a technique to localize the O-1(2) generator, a photocatalyst in close proximity to the ligand-binding site, we demonstrated antibody Fc-selective labeling on magnetic beads functionalized with a ruthenium photocatalyst and Fc ligand, ApA. Three histidine residues located around the ApA binding site were identified as labeling sites by liquid chromatography-mass spectrometry analysis. This result suggests that O-1(2)-mediated histidine labeling can be applied to a proximity labeling reaction on the nanometer scale.
引用
收藏
页码:7726 / 7731
页数:6
相关论文
共 50 条
  • [31] Improved functional recovery of ischemic rat hearts due to singlet oxygen scavengers histidine and carnosine
    Lee, JW
    Miyawaki, H
    Bobst, EV
    Hester, JD
    Ashraf, M
    Bobst, AM
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1999, 31 (01) : 113 - 121
  • [32] Protocol to study secretome interactions using extracellular proximity labeling
    Rich, Joshua A.
    Gurung, Sadeechya
    Coates-Park, Sasha
    Liu, Yueqin
    Govil, Anshika
    Stetler-Stevenson, William G.
    Peeney, David
    STAR PROTOCOLS, 2024, 5 (04):
  • [33] Proximity-dependent Labeling by Using Energy Transfer Processes
    Toh K.
    Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80 (01): : 64 - 65
  • [34] Effects of singlet oxygen on the extracellular matrix protein collagen: Oxidation of the collagen crosslink histidinohydroxylysinonorleucine and histidine
    Au, V
    Madison, SA
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2000, 384 (01) : 133 - 142
  • [35] Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green®
    Flors, Cristina
    Fryer, Michael J.
    Waring, Jen
    Reeder, Brandon
    Bechtold, Ulrike
    Mullineaux, Philip M.
    Nonell, Santi
    Wilson, Michael T.
    Baker, Neil R.
    JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (08) : 1725 - 1734
  • [37] SINGLET OXYGEN GENERATOR USING A POROUS PIPE
    TAKEHISA, K
    SHIMIZU, N
    UCHIYAMA, T
    JOURNAL OF APPLIED PHYSICS, 1987, 61 (01) : 68 - 73
  • [38] Strategy for photostable proximity bioassays using lanthanides
    Haushalter, Jeanne P.
    Faris, Gregory W.
    APPLIED OPTICS, 2007, 46 (10) : 1918 - 1923
  • [39] A proximity labeling strategy enables proteomic analysis of inter-organelle membrane contacts
    Zhou, Maoge
    Kong, Bingjie
    Zhang, Xiang
    Xiao, Ke
    Lu, Jing
    Li, Weixing
    Li, Min
    Li, Zonghong
    Ji, Wei
    Hou, Junjie
    Xu, Tao
    ISCIENCE, 2023, 26 (07)
  • [40] Host-Guest Strategy for Organic Phosphorescence to Generate Oxygen Radical over Singlet Oxygen
    Kang, Lingling
    Chao, Cong
    Xiong, Chenchen
    Yu, Shuang
    Xiao, Changtao
    Zhao, Changsheng
    Cui, Shisheng
    Li, Jiguang
    Li, Jing
    Shi, Jianbing
    Tong, Bin
    Wang, Zhuo
    Song, Yin
    Zhao, Weiqian
    Cai, Zhengxu
    Dong, Yuping
    CHEMISTRY OF MATERIALS, 2024, 36 (15) : 7332 - 7342