Open source software for the analysis of microarray data

被引:0
|
作者
Dudoit, S
Gendeman, RC
Quackenbush, J
机构
[1] Inst Genom Res, Rockville, MD 20858 USA
[2] Harvard Univ, Sch Publ Hlth, Boston, MA 02115 USA
[3] Dana Farber Canc Inst, Boston, MA 02115 USA
[4] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
DNA microarray assays represent the first widely used application that attempts to build upon the information provided by genome projects in the study of biological questions. One of the greatest challenges with working with microarrays is collecting, managing, and analyzing data. Although several commercial and noncommercial solutions exist, there is a growing body of freely available, open source software that allows users to analyze data using a host of existing techniques and to develop their own and integrate them within the system. Here we review three of the most widely used and comprehensive systems, the statistical analysis tools written in R through the Bioconductor project (http://www.bioconductor.org), the Java(R)-based TM4 software system available from The Institute for Genomic Research (http://www.tigr.org/software), and BASE, the Web-based system developed at Lund University (http://base.thep.lu.se).
引用
下载
收藏
页码:45 / 51
页数:7
相关论文
共 50 条
  • [31] Open-source guideseq software for analysis of GUIDE-seq data
    Shengdar Q Tsai
    Ved V Topkar
    J Keith Joung
    Martin J Aryee
    Nature Biotechnology, 2016, 34 : 483 - 483
  • [32] Open source software for single molecule fluorescence spectroscopy data analysis and simulation
    Gaffney, DP
    Berger, CL
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 657A - 657A
  • [33] pMAT: An open-source software suite for the analysis of fiber photometry data
    Bruno, Carissa A.
    O'Brien, Chris
    Bryant, Svetlana
    Mejaes, Jennifer, I
    Estrin, David J.
    Pizzano, Carina
    Barker, David J.
    PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR, 2021, 201
  • [34] IOCBIO Kinetics: An open-source software solution for analysis of data traces
    Vendelin, Marko
    Laasmaa, Martin
    Kalda, Mari
    Branovets, Jelena
    Karro, Niina
    Barsunova, Karina
    Birkedal, Rikke
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (12)
  • [35] Blind source separation and the analysis of microarray data
    Chiappetta, P
    Roubaud, MC
    Torrésani, B
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2004, 11 (06) : 1090 - 1109
  • [36] ValWorkBench: An open source Java']Java library for cluster validation, with applications to microarray data analysis
    Giancarlo, R.
    Scaturro, D.
    Utro, F.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2015, 118 (02) : 207 - 217
  • [37] TM4: A free, open-source system for microarray data management and analysis
    Saeed, AI
    Sharov, V
    White, J
    Li, J
    Liang, W
    Bhagabati, N
    Braisted, J
    Klapa, M
    Currier, T
    Thiagarajan, M
    Sturn, A
    Snuffin, M
    Rezantsev, A
    Popov, D
    Ryltsov, A
    Kostukovich, E
    Borisovsky, I
    Liu, Z
    Vinsavich, A
    Trush, V
    Quackenbush, J
    BIOTECHNIQUES, 2003, 34 (02) : 374 - +
  • [38] A Comparative Analysis of Software Reliability Growth Models using defects data of Closed and Open Source Software
    Ullah, Najeeb
    Morisio, Maurizio
    Vetro, Antonio
    PROCEEDINGS OF THE 2012 IEEE 35TH SOFTWARE ENGINEERING WORKSHOP (SEW 2012), 2012, : 187 - 192
  • [39] Analysis of Competition Between Open Source Software and Proprietary Software
    Dong, Zhao Jian
    Ying, Liu
    Li, Zhu
    Proceedings of the 2016 6th International Conference on Applied Science, Engineering and Technology (ICASET), 2016, 77 : 224 - 227
  • [40] Phenobook: an open source software for phenotypic data collection
    Crescente, Juan M.
    Guidobaldi, Fabio
    Demichelis, Melina
    Formica, Maria B.
    Helguera, Marcelo
    Vanzetti, Leonardo S.
    GIGASCIENCE, 2017, 6 (04): : 1 - 5