Two-Dimensional π-Conjugated Covalent-Organic Frameworks as Quantum Anomalous Hall Topological Insulators

被引:84
|
作者
Dong, Liang [1 ]
Kim, Youngkuk [2 ]
Er, Dequan [1 ]
Rappe, Andrew M. [2 ]
Shenoy, Vivek B. [1 ]
机构
[1] Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Chem, Makineni Theoret Labs, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
HEXAGONAL BORON-NITRIDE; TRANSITION; GRAPHENE; STATE;
D O I
10.1103/PhysRevLett.116.096601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum anomalous Hall (QAH) insulator is a novel topological state of matter characterized by a nonzero quantized Hall conductivity without an external magnetic field. Using first-principles calculations, we predict the QAH state in monolayers of covalent-organic frameworks based on the newly synthesized X-3(C18H12N6)(2) structure where X represents 5d transition metal elements Ta, Re, and Ir. The pi conjugation between X d(xz) and d(yz) orbitals, mediated by N p(z) and C p(z) orbitals, gives rise to a massive Dirac spectrum in momentum space with a band gap of up to 24 meV due to strong spin-orbit coupling. We show that the QAH state can appear by chemically engineering the exchange field and the Fermi level in the monolayer structure, resulting in nonzero Chern numbers. Our results suggest a reliable pathway toward the realization of a QAH phase at temperatures between 100 K and room temperature in covalent-organic frameworks.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Research progress of two-dimensional organic topological insulators
    Gao Yi-Xuan
    Zhang Li-Zhi
    Zhang Yu-Yang
    Du Shi-Xuan
    ACTA PHYSICA SINICA, 2018, 67 (23)
  • [32] Quantum anomalous Hall effect in magnetic topological insulators
    Wang, Jing
    Lian, Biao
    Zhang, Shou-Cheng
    PHYSICA SCRIPTA, 2015, T164
  • [33] QUANTUM ANOMALOUS HALL EFFECT IN MAGNETIC TOPOLOGICAL INSULATORS
    Xue, Qi-Kun
    He, Ke
    Wang, Yayu
    2016 IEEE 29TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2016, : 1 - 1
  • [34] Quantum anomalous Hall effect in magnetic topological insulators
    Feng X.
    He K.
    Xue Q.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2020, 52 (06): : 1 - 11
  • [35] Topological Insulators in Silicene: Quantum Hall, Quantum Spin Hall and Quantum Anomalous Hall Effects
    Ezawa, Motohiko
    PHYSICS OF SEMICONDUCTORS, 2013, 1566 : 199 - 200
  • [36] Organic steep-slope nano-FETs: A rational design based on two-dimensional covalent-organic frameworks
    Gong, Xiangxin
    Xu, Lijun
    Sang, Pengpeng
    Li, Yuan
    Chen, Jiezhi
    ORGANIC ELECTRONICS, 2022, 100
  • [37] Electronic properties of two-dimensional covalent organic frameworks
    Zhu, P.
    Meunier, V.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (24):
  • [38] Two-Dimensional Covalent Organic Frameworks with Pentagonal Pores
    Wen, Fuxiang
    Xu, Kai
    Feng, Yaoqian
    Huang, Ning
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (29) : 19680 - 19685
  • [39] Tessellated multiporous two-dimensional covalent organic frameworks
    Yinghua Jin
    Yiming Hu
    Wei Zhang
    Nature Reviews Chemistry, 1
  • [40] Pore partition in two-dimensional covalent organic frameworks
    Xu, Xiaoyi
    Wu, Xinyu
    Xu, Kai
    Xu, Hong
    Chen, Hongzheng
    Huang, Ning
    NATURE COMMUNICATIONS, 2023, 14 (01)