Noncommutative phase-space effects in thermal diffusion of Gaussian states

被引:8
|
作者
Santos, Jonas F. G. [1 ]
机构
[1] Univ Fed ABC, Ctr Ciencias Nat & Humanas, Ave Estados 5001, BR-09210580 Santo Andre, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
non-commutative phase-space; Gaussian states; non-Markovian; WIGNER DISTRIBUTIONS; QUANTUM-MECHANICS; THERMODYNAMICS; INFORMATION; FIDELITY; EQUATION;
D O I
10.1088/1751-8121/ab3adb
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Noncommutative phase-space and its effects have been studied in different settings in physics, in order to unveil a better understanding of phase-space structures. Here, we use the thermal diffusion approach to study how noncommutative effects can influence the time evolution of a one-mode Gaussian state when in contact with a thermal environment obeying the Markov approximation. Employing the cooling process and considering the system of interest as a one-mode Gaussian state, we show that the fidelity comparing the Gaussian state of the system in different times and the asymptotic thermal state is useful to sign noncommutative effects. In addition, by using the monotonicity behavior of the fidelity, we discuss some aspects of non-Markovianity during the dynamics.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Uncertainty relations for a non-canonical phase-space noncommutative algebra
    Dias, Nuno C.
    Prata, Joao N.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (22)
  • [32] Emergent time crystals from phase-space noncommutative quantum mechanics
    Bernardini, A. E.
    Bertolami, O.
    PHYSICS LETTERS B, 2022, 835
  • [33] Quantum engines and the range of the second law of thermodynamics in the noncommutative phase-space
    Jonas F. G. Santos
    Alex E. Bernardini
    The European Physical Journal Plus, 132
  • [34] THE EIGENVALUES OF TWO MODES COUPLED HARMONIC OSCILLATORS IN NONCOMMUTATIVE PHASE-SPACE
    Diao, Xin-Feng
    Long, Chao-Yun
    Guo, Guang-Jie
    Long, Zheng-Wen
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (09): : 1561 - 1567
  • [35] PHASE-SPACE REDUCTION IN NEUTRON DIFFUSION CALCULATIONS
    HARMS, AA
    BABB, AL
    NUCLEAR SCIENCE AND ENGINEERING, 1971, 43 (01) : 66 - &
  • [36] Relativistic dispersion relation and putative metric structure in noncommutative phase-space
    Leal, R.
    Bertolami, O.
    PHYSICS LETTERS B, 2019, 793 : 240 - 246
  • [37] Quantum engines and the range of the second law of thermodynamics in the noncommutative phase-space
    Santos, Jonas F. G.
    Bernardini, Alex E.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (06):
  • [38] Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space
    Ben Geloun, J.
    Gangopadhyay, Sunandan
    Scholtz, F. G.
    EPL, 2009, 86 (05)
  • [39] Noncommutative phase-space Lotka-Volterra dynamics: The quantum analog
    Bernardini, A. E.
    Bertolami, O.
    PHYSICAL REVIEW E, 2022, 106 (02)
  • [40] Deformed squeezed states in noncommutative phase space
    Lin, Bingsheng
    Jing, Sicong
    PHYSICS LETTERS A, 2008, 372 (29) : 4880 - 4884