Graded high field Nb3Sn dipole magnets

被引:2
|
作者
Caspi, S. [1 ]
Ferracin, P. [1 ]
Gourlay, S. [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
关键词
grading; stored energy; stress; superconducting magnets;
D O I
10.1109/TASC.2006.873328
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dipole magnets with fields beyond 16T will require superconducting coils that are at least 40 mm thick, an applied pres-stress around 150 MPa and a protection scheme for stored energy in the range of 1-2 MJ/m. The coil size will have a direct impact on the overall magnet cost and the stored energy will raise new questions on protection. To reduce coil size and minimize risk, the coil may have to be graded. Grading is achieved by splitting the coil into several layers with current densities that match the short sample field in each layer. Grading, especially at high fields, can be effective; however it will also significantly raise the stress. In this paper we report on the results of a study on the coil size and field relation to that of the stress and stored energy. We then extend the results to graded coils and attempt to address high stress issues and ways to reduce it.
引用
收藏
页码:354 / 357
页数:4
相关论文
共 50 条
  • [31] Research and Development of Nb3Sn Wires and Cables for High-Field Accelerator Magnets
    Barzi, Emanuela
    Zlobin, Alexander V.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2016, 63 (02) : 783 - 803
  • [32] Powder-in-tube (PIT) Nb3Sn conductors for high-field magnets
    Lindenhovius, JLH
    Hornsveld, EM
    den Ouden, A
    Wessel, WAJ
    ten Kate, HHJ
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2000, 10 (01) : 975 - 978
  • [33] MULTIFILAMENTARY NB3SN DIPOLE MAGNET
    SAMPSON, WB
    SUENAGA, M
    KISS, S
    IEEE TRANSACTIONS ON MAGNETICS, 1977, 13 (01) : 287 - 289
  • [34] Test of the High-Field Nb3Sn Dipole Magnet HD3b
    Marchevsky, M.
    Caspi, S.
    Cheng, D. W.
    Dietderich, D. R.
    DiMarco, J.
    Felice, H.
    Ferracin, P.
    Godeke, A.
    Hafalia, A. R.
    Joseph, J.
    Lizarazo, J.
    Roy, P. K.
    Sabbi, G.
    Salmi, T.
    Turqueti, M.
    Wang, X.
    Prestemon, S.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2014, 24 (03)
  • [35] Nb3Sn quadrupole magnets for the LHC IR
    Sabbi, G
    Caspi, S
    Chiesa, L
    Coccoli, M
    Dietderich, DR
    Ferracin, P
    Gourlay, SA
    Hafalia, RR
    Lietzke, AF
    McInturff, AD
    Scanlan, RM
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2003, 13 (02) : 1262 - 1265
  • [36] Ceramic insulation for Nb3Sn wires and magnets
    Celik, E
    Mutlu, IH
    Hascicek, YS
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2002, 370 (02): : 125 - 131
  • [37] Modeling Training in Nb3Sn Superconducting Magnets
    Vallone, G.
    Anderssen, E.
    Arbelaez, D.
    Brouwer, L.
    Ferracin, P.
    Fernandez, J. L. Rudeiros
    Shen, T.
    Teyber, R.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2024, 34 (05)
  • [38] Perspectives of Nb3Sn in future accelerator magnets
    Limon, Peter J.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2006, 16 (02) : 305 - 310
  • [39] Layout Study for the Dipole Magnets of the Future Circular Collider Using Nb-Ti and Nb3Sn
    van Nugteren, J.
    Schoerling, D.
    Kirby, G.
    Murtomaki, J.
    de Rijk, G.
    Rossi, L.
    Bottura, L.
    ten Kate, H.
    Dhalle, M.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2016, 26 (04)
  • [40] Characterization of Nb3Sn superconductors for hybrid magnets
    Lu, Jun
    Choi, Eun Sang
    Walsh, Robert
    Goddard, Robert
    Han, Ke
    Miller, John R.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2007, 17 (02) : 2651 - 2654