Flow-electrode capacitive deionization: A review and new perspectives

被引:148
|
作者
Yang, Fan [1 ]
He, Yunfei [1 ]
Rosentsvit, Leon [2 ]
Suss, Matthew E. [2 ,3 ]
Zhang, Xiaori [1 ]
Gao, Tie [1 ]
Liang, Peng [1 ]
机构
[1] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
[2] Technion Israel Inst Technol, Fac Mech Engn, IL-32000 Haifa, Israel
[3] Technion Israel Inst Technol, Fac Chem Engn, IL-32000 Haifa, Israel
关键词
Flow-electrode capacitive deionization; Electrosorption; Electrodialysis; Charge transport; Electronic resistance; FLUIDIZED-BED ELECTRODES; SUSPENSION ELECTRODES; WATER DESALINATION; CARBON-BLACK; SLURRY ELECTRODES; CHARGE-TRANSPORT; ENERGY RECOVERY; ELECTRICAL-CONDUCTIVITY; IMPEDANCE TECHNIQUES; ACTIVATED CARBON;
D O I
10.1016/j.watres.2021.117222
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Flow-electrode capacitive deionization (FCDI), as a novel electro-driven desalination technology, has attracted growing exploration towards brackish water treatment, hypersaline water treatment, and selective resource recovery in recent years. As a flow-electrode-based electrochemical technology, FCDI has similarities with several other electrochemical technologies such as electrochemical flow capacitors and semisolid fuel cells, whose performance are closely coupled with the characteristics of the flow-electrodes. In this review, we sort out the potentially parallel mechanisms of electrosorption and electrodialysis in the FCDI desalination process, and make clear the importance of the flowable capacitive electrodes. We then adopt an equivalent circuit model to distinguish the resistances to ion transport and electron transport within the electrodes, and clarify the importance of electronic conductivity on the system performance based on a series of electrochemical tests. Furthermore, we discuss the effects of electrode selection and flow circulation patterns on system performance (energy consumption, salt removal rate), review the current treatment targets and system performance, and then provide an outlook on the research directions in the field to support further applications of FCDI. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Recovering ammonia from municipal wastewater by flow-electrode capacitive deionization
    Fang, Kuo
    Gong, Hui
    He, Wenyan
    Peng, Fei
    He, Conghui
    Wang, Kaijun
    CHEMICAL ENGINEERING JOURNAL, 2018, 348 : 301 - 309
  • [22] Single module flow-electrode capacitive deionization for continuous water desalination
    Rommerskirchen, Alexandra
    Gendel, Youri
    Wessling, Matthias
    ELECTROCHEMISTRY COMMUNICATIONS, 2015, 60 : 34 - 37
  • [23] Concurrent Nitrogen and Phosphorus Recovery Using Flow-Electrode Capacitive Deionization
    Bian, Yanhong
    Chen, Xi
    Lu, Lu
    Liang, Peng
    Ren, Zhiyong Jason
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (08) : 7844 - 7850
  • [24] pH Dependence of Phosphorus Speciation and Transport in Flow-Electrode Capacitive Deionization
    Bian, Yanhong
    Chen, Xi
    Ren, Zhiyong Jason
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (14) : 9116 - 9123
  • [25] Ion storage and energy recovery of a flow-electrode capacitive deionization process
    Jeon, Sung-il
    Yeo, Jeong-gu
    Yang, SeungCheol
    Choi, Jiyeon
    Kim, Dong Kook
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (18) : 6378 - 6383
  • [26] Water Desalination by Flow-Electrode Capacitive Deionization in Overlimiting Current Regimes
    Tang, Kexin
    Zhou, Kun
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (09) : 5853 - 5863
  • [27] Machine learning modeling in flow-electrode capacitive deionization system: Prediction of ion concentrations in flow-electrode aqueous electrolytes
    Jeon, Junbeom
    Il Yu, Sung
    Shin, Yong-Uk
    Bae, Hyokwan
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 67
  • [28] Selection and optimization of carbon-based electrode materials for flow-electrode capacitive deionization
    Zhang, Wanni
    Xue, Wenchao
    Xiao, Kang
    Visvanathan, Chettiyappan
    Tang, Jialing
    Li, Lu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 315
  • [29] Influence of Feed-Electrode Concentration Differences in Flow-Electrode Systems for Capacitive Deionization
    Moreno, Daniel
    Hatzell, Marta C.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (26) : 8802 - 8809
  • [30] Enhancing Brackish Water Desalination using Magnetic Flow-electrode Capacitive Deionization
    Xu, Longqian
    Peng, Shuai
    Mao, Yunfeng
    Zong, Yang
    Zhang, Xiaomeng
    Wu, Deli
    Water Research, 2022, 216