Modeling a robust wind-speed forecasting to apply to wind-energy production

被引:5
|
作者
Gustavo Hernandez-Travieso, Jose [1 ]
Travieso-Gonzalez, Carlos M. [1 ]
Alonso-Hernandez, Jesus B. [1 ]
Miguel Canino-Rodriguez, Jose [2 ]
Ravelo-Garcia, Antonio G. [1 ]
机构
[1] Univ Las Palmas Gran Canaria, Signal & Commun Dept, Inst Technol Dev & Innovat Communt IDeTIC, Campus Univ Tafira,S-N,Ed Telecomunica,Pabellon B, E-35017 Las Palmas Gran Canaria, Spain
[2] Univ Las Palmas Gran Canaria, Signal & Commun Dept, Campus Univ Tafira,S-N,Ed Telecomunica,Pabellon B, E-35017 Las Palmas Gran Canaria, Spain
来源
NEURAL COMPUTING & APPLICATIONS | 2019年 / 31卷 / 11期
关键词
Modeling; Wind-speed prediction; Green energy; Artificial neural networks; NEURAL-NETWORKS; POWER; PREDICTION;
D O I
10.1007/s00521-018-3619-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To obtain green energy, it is important to know, in advance, an estimation of the weather conditions. In case of wind energy, another important factor is to determine the right moment to stop the turbine in case of strong winds to avoid its damage. This research introduces a tool, not only to increase green energy generation from wind, reducing CO2 emissions, but also to prevent failures in turbines that is especially interesting for manufacturers. Using Artificial Neural Networks and data from meteorological stations located in Gran Canaria airport and Tenerife Sur airport (both in Canary Islands, Spain), a robust prediction system able to determine wind speed with a mean absolute error of 0.29 m per second is presented.
引用
收藏
页码:7891 / 7905
页数:15
相关论文
共 50 条