Stability of piecewise affine systems with application to chaos stabilization

被引:5
|
作者
Li, Chuandong [1 ]
Chen, Guanrong
Liao, Xiaofeng
机构
[1] Chongqing Univ, Dept Comp Sci & Engn, Chongqing 400030, Peoples R China
[2] City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1063/1.2734905
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses the stability issue for a class of piecewise affine (PWA) systems, where the state spaces are assumed to be dividable into a certain number of hypercuboid subspaces. By constructing appropriate piecewise continuous Lyapunov functions, several numerically tractable stability criteria are developed for four subclasses of such PWA systems, which allow to recast the switching control problem for the PWA systems as a convex optimization problem. Moreover, the proposed method is applied to switching controller design for (globally and locally) stabilizing the unstable equilibrium points of PWA chaotic systems. Numerical simulations on the chaotic Chua's circuit are presented to verify the theoretical results. (c) 2007 American Institute of Physics.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] OPTIMAL CONTROL OF PIECEWISE AFFINE SYSTEMS WITH PIECEWISE AFFINE STATE FEEDBACK
    Wu, Changzhi
    Teo, Kok Lay
    Rehbock, Volker
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2009, 5 (04) : 737 - 747
  • [32] Monotone Piecewise Affine Systems
    Aswani, Anil
    Tomlin, Claire
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (08) : 1913 - 1918
  • [33] Asymptotic Stability of Piecewise Affine Systems With Filippov Solutions via Discontinuous Piecewise Lyapunov Functions
    Iervolino, Raffaele
    Trenn, Stephan
    Vasca, Francesco
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) : 1513 - 1528
  • [34] Stability Criteria for Uncertain Piecewise Affine Time-Delay Systems
    Duan, Shiming
    Ni, Jun
    Ulsoy, A. Galip
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 5460 - 5465
  • [35] Subtleties in robust stability of discrete-time piecewise affine systems
    Lazar, M.
    Heernels, W. P. M. H.
    Teel, A. R.
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 4463 - +
  • [36] Stability and Transient Performance of Discrete-Time Piecewise Affine Systems
    Mirzazad-Barijough, Sanam
    Lee, Ji-Woong
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (04) : 936 - 949
  • [37] Asymptotic stability of sampled-data piecewise affine slab systems
    Moarref, Miad
    Rodrigues, Luis
    AUTOMATICA, 2012, 48 (11) : 2874 - 2881
  • [38] Regional Stability Analysis of Discrete-Time Piecewise Affine Systems
    Cabral, Leonardo
    Valmorbida, Giorgio
    da Silva Jr, Joao Manoel Gomes
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (04) : 2507 - 2520
  • [39] On Stability and Performance Analysis of Discrete-Time Piecewise Affine Systems
    Mirzazad-Barijough, Sanam
    Lee, Ji-Woong
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 4244 - 4249
  • [40] Lyapunov stability for piecewise affine systems via cone-copositivity
    Iervolino, Raffaele
    Tangredi, Domenico
    Vasca, Francesco
    AUTOMATICA, 2017, 81 : 22 - 29