Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks

被引:50
|
作者
Kolb, Brian [1 ,2 ]
Zhao, Bin [1 ]
Li, Jun [3 ]
Jiang, Bin [4 ]
Guo, Hua [1 ]
机构
[1] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] Chongqing Univ, Sch Chem & Chem Engn, Chongqing 401331, Peoples R China
[4] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2016年 / 144卷 / 22期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
QUANTUM DYNAMICS; WATER CLUSTERS; SIMULATIONS; MOLECULES; PROTEINS; KINETICS; SPECTRUM;
D O I
10.1063/1.4953560
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The applicability and accuracy of the Behler-Parrinello atomistic neural network method for fitting reactive potential energy surfaces is critically examined in three systems, H + H-2 -> H-2 + H, H + H2O -> H-2 + OH, and H + CH4 -> H-2 + CH3. A pragmatic Monte Carlo method is proposed to make efficient choice of the atom-centered mapping functions. The accuracy of the potential energy surfaces is not only tested by fitting errors but also validated by direct comparison in dynamically important regions and by quantum scattering calculations. Our results suggest this method is both accurate and efficient in representing multidimensional potential energy surfaces even when dissociation continua are involved. Published by AIP Publishing.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Accurate fundamental invariant-neural network representation of ab initio potential energy surfaces
    Fu, Bina
    Zhang, Dong H.
    NATIONAL SCIENCE REVIEW, 2023, 10 (12)
  • [32] Accurate fundamental invariant-neural network representation of ab initio potential energy surfaces
    Bina Fu
    Dong H.Zhang
    National Science Review, 2023, 10 (12) : 26 - 39
  • [33] MULTIPERTURBATION APPROACH TO POTENTIAL-ENERGY SURFACES FOR POLYATOMIC-MOLECULES
    GALVAN, DH
    ABUJAFAR, M
    SANDERS, FC
    JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (12): : 4919 - 4930
  • [34] Approach to Potential Energy Surfaces by Neural Networks. A Review of Recent Work
    Latino, Diogo A. R. S.
    Fartaria, Rui P. S.
    Freitas, Filomena F. M.
    Aires-De-Sousa, Joao
    Silva Fernandes, Fernando M. S.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2010, 110 (02) : 432 - 445
  • [35] Communication: Separable potential energy surfaces from multiplicative artificial neural networks
    Koch, Werner
    Zhang, Dong H.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (02):
  • [36] Exploring artificial neural networks to model interatomic and intermolecular potential energy surfaces
    Dixit, Mayank
    Daniel, Joseph
    Bhattacharyya, Shankar Prasad
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2021, 98 (09)
  • [37] Three-dimensional diabatic potential energy surfaces of thiophenol with neural networks
    Li, Chaofan
    Hou, Siting
    Xie, Changjian
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2021, 34 (06) : 825 - 832
  • [38] Mapping Potential Energy Surfaces by Neural Networks: The ethanol/Au(111) interface
    Latino, Diogo A. R. S.
    Fartaria, Rui P. S.
    Freitas, Filomena F. M.
    Aires-de-Sousa, Joao
    Silva Fernandes, Fernando M. S.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2008, 624 (1-2) : 109 - 120
  • [39] Representing Potential Energy Surfaces with Neural Networks and High Dimensional Model Representations
    Manzhos, Sergei
    Carrington, Tucker
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009 (ICCMSE 2009), 2012, 1504 : 785 - 787
  • [40] Neural networks to approach potential energy surfaces: Application to a molecular dynamics simulation
    Latino, Diogo A. R. S.
    Freitas, Filomena F. M.
    Aires-De-Sousa, Joao
    Fernandes, Fernando M. S. Silva
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2007, 107 (11) : 2120 - 2132