Recovery of cathode materials from spent lithium-ion batteries using eutectic system of lithium compounds

被引:58
|
作者
Ji, Yi [1 ]
Jafvert, Chad T. [1 ,2 ]
Zhao, Fu [1 ,3 ]
机构
[1] Purdue Univ, Environm & Ecol Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Civil Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Mech Engn, 585 Purdue Mall, W Lafayette, IN 47907 USA
关键词
Lithium-ion battery; Cathode materials; Molten salt; Delamination; PVDF decomposition; THERMAL-STABILITY; WASTE; EXTRACTION; METALS; IMPACT; FOIL;
D O I
10.1016/j.resconrec.2021.105551
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The cathode material is the focus of end-of-life lithium-ion battery recycling due to its high value. Cathode-to-cathode direct recycling avoids the need to change the cathode material to other metal forms, which could have significant economic and environmental advantages. A process that separates the cathode layer from current collector and recovers the active cathode materials is highly desirable as this facilitates the following regeneration step. In the present work, eutectic mixtures of lithium compounds are studies as an efficient and environmentally friendly approach for the separation and recovery of active cathode materials. Three commonly used inorganic lithium compounds i.e. LiCl, LiNO3, and LiOH, and their binary eutectic systems are investigated. It is found that LiOH-LiNO3 eutectic system has the highest peel-off efficiency. At temperature of 260 degrees C with 30 min holding time and salts/cathode electrode mass ratio of 10:1, up to 98.3% of cathode active materials can be recovered. The recovered cathode materials show minimal change and destruction on chemical composition, crystal structure, and morphology. Results suggest that LiOH-LiNO3 eutectic system can facilitate the decomposition of polyvinylidene fluoride binder and capture the HF released. The process based on eutectic systems of lithium compounds provides an alternative binder removal approach to organic solvents, and offers re-lithiation benefit without introducing impurities. It has the potential to promote direct recycling and sustainable recycling of spent lithium-ion batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid
    Chen, Xiangping
    Ma, Hongrui
    Luo, Chuanbao
    Zhou, Tao
    JOURNAL OF HAZARDOUS MATERIALS, 2017, 326 : 77 - 86
  • [32] Study on Roasting for Selective Lithium Leaching of Cathode Active Materials from Spent Lithium-Ion Batteries
    Jung, Yeonjae
    Yoo, Bongyoung
    Park, Sungcheol
    Kim, Yonghwan
    Son, Seongho
    METALS, 2021, 11 (09)
  • [33] Lithium fluoride recovery from cathode material of spent lithium-ion battery
    Zheng, Ying
    Song, Wei
    Mo, Wen-ting
    Zhou, Lai
    Liu, Jian-Wen
    RSC ADVANCES, 2018, 8 (16) : 8990 - 8998
  • [34] Selective Recovery of Lithium from Cathode Materials of Spent Lithium Ion Battery
    Akitoshi Higuchi
    Naoki Ankei
    Syouhei Nishihama
    Kazuharu Yoshizuka
    JOM, 2016, 68 : 2624 - 2631
  • [35] Selective Recovery of Lithium from Cathode Materials of Spent Lithium Ion Battery
    Higuchi, Akitoshi
    Ankei, Naoki
    Nishihama, Syouhei
    Yoshizuka, Kazuharu
    JOM, 2016, 68 (10) : 2624 - 2631
  • [36] Screening of Deep Eutectic Solvent Based on Efficient Recovery of Spent Lithium-ion Battery Cathode Materials
    Gong Shanshan
    Wu Tong
    Wang Guange
    Huang Qing
    Su Yuefeng
    Wu Feng
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2021, 42 (10): : 3151 - 3159
  • [37] A facile approach for the selective recovery of lithium from spent lithium-ion batteries
    Jumari, Arif
    Yudha, Cornelius Satria
    Dyartanti, Endah Retno
    Nizam, Muhammad
    Suranto
    Purwanto, Agus
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 18 : 3640 - 3651
  • [38] Recent recycling methods for spent cathode materials from lithium-ion batteries: A review
    Dhanabalan, Karmegam
    Aruchamy, Kanakaraj
    Sriram, Ganesan
    Sadhasivam, Thangarasu
    Oh, Tae Hwan
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2024, 139 : 111 - 124
  • [39] Regeneration and reutilization of cathode materials from spent lithium-ion batteries<bold> </bold>
    Zhao, Yanlan
    Yuan, Xingzhong
    Jiang, Longbo
    Wen, Jia
    Wang, Hou
    Guan, Renpeng
    Zhang, Jingjing
    Zeng, Guangming
    CHEMICAL ENGINEERING JOURNAL, 2020, 383
  • [40] Upcycling of Cathode Materials from Spent Lithium-Ion Batteries: Progress, Challenges, and Outlook
    Zheng, Lingxia
    Pan, Yaoling
    Lu, Jianwei
    Zhen, Aigang
    Zheng, Huajun
    ENERGY & FUELS, 2023, 37 (23) : 17966 - 17978