On orbital regular graphs and frobenius graphs

被引:17
|
作者
Fang, XG [1 ]
Li, CH [1 ]
Praeger, CE [1 ]
机构
[1] Univ Western Australia, Dept Math, Perth, WA 6907, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1016/S0012-365X(97)00148-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called a Frobenius graph if it is a connected orbital graph of a Frobenius group. In this paper, we show first that almost all orbital regular graphs are Frobenius graphs. Then we give a description of Frobenius graphs in terms of a family of (usually smaller) Frobenius graphs which are Cayley graphs for elementary abelian groups. Finally, based on this description, we obtain a formula for calculating the edge-forwarding index of Frobenius graphs.
引用
收藏
页码:85 / 99
页数:15
相关论文
共 50 条
  • [31] HIGHLY REGULAR GRAPHS
    ALAVI, Y
    CHARTRAND, G
    LICK, DR
    SWART, HC
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 : 20 - 29
  • [32] FACTORIZATIONS OF REGULAR GRAPHS
    ZHANG, CQ
    ZHU, YJ
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1992, 56 (01) : 74 - 89
  • [33] Decycling regular graphs
    Punnim, Narong
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 32 : 147 - 162
  • [34] Factorizing regular graphs
    Thomassen, Carsten
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 141 : 343 - 351
  • [35] MATCHINGS IN REGULAR GRAPHS
    NADDEF, D
    PULLEYBLANK, WR
    DISCRETE MATHEMATICS, 1981, 34 (03) : 283 - 291
  • [36] Graphs with regular monoids
    Li, WM
    DISCRETE MATHEMATICS, 2003, 265 (1-3) : 105 - 118
  • [37] Regular quantum graphs
    Severini, S
    Tanner, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (26): : 6675 - 6686
  • [38] GRAPHS WITH REGULAR GROUPS
    IMRICH, W
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 19 (02) : 174 - 180
  • [39] Regular Matchstick Graphs
    Kurz, Sascha
    Pinchasi, Rom
    AMERICAN MATHEMATICAL MONTHLY, 2011, 118 (03): : 264 - 267
  • [40] About Regular Graphs
    Koch, Sebastian
    FORMALIZED MATHEMATICS, 2023, 31 (01): : 75 - 86