On orbital regular graphs and frobenius graphs

被引:17
|
作者
Fang, XG [1 ]
Li, CH [1 ]
Praeger, CE [1 ]
机构
[1] Univ Western Australia, Dept Math, Perth, WA 6907, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1016/S0012-365X(97)00148-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called a Frobenius graph if it is a connected orbital graph of a Frobenius group. In this paper, we show first that almost all orbital regular graphs are Frobenius graphs. Then we give a description of Frobenius graphs in terms of a family of (usually smaller) Frobenius graphs which are Cayley graphs for elementary abelian groups. Finally, based on this description, we obtain a formula for calculating the edge-forwarding index of Frobenius graphs.
引用
收藏
页码:85 / 99
页数:15
相关论文
共 50 条
  • [1] On orbital regular graphs and frobenius graphs
    Discrete Math, 1-3 (85-99):
  • [2] THE EDGE-FORWARDING INDEX OF ORBITAL REGULAR GRAPHS
    SOLE, P
    DISCRETE MATHEMATICS, 1994, 130 (1-3) : 171 - 176
  • [3] Degrees in link graphs of regular graphs
    Benjamini, Itai
    Haslegrave, John
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02):
  • [4] Regular graphs
    Golumbic, Martin Charles
    Sainte-Lague, Andre
    ZEROTH BOOK OF GRAPH THEORY: AN ANNOTATED TRANSLATION OF LES RESEAUX (OU GRAPHES)-ANDRE SAINTE-LAGUE (1926), 2021, 2261 : 31 - 37
  • [5] A family of tetravalent Frobenius graphs
    Wang, Yan
    ARS COMBINATORIA, 2009, 92 : 131 - 136
  • [6] Inverse of Frobenius Graphs and Flexibility
    Aljouiee, Abdulla
    KYUNGPOOK MATHEMATICAL JOURNAL, 2005, 45 (04): : 561 - 570
  • [7] EMBEDDING ARBITRARY GRAPHS INTO STRONGLY REGULAR AND DISTANCE REGULAR GRAPHS
    Fon-Der-Flaass, D. G.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2005, 2 : 218 - 221
  • [8] Observability in Connected Strongly Regular Graphs and Distance Regular Graphs
    Kibangou, Alain Y.
    Commault, Christian
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2014, 1 (04): : 360 - 369
  • [9] Regular packings of regular graphs
    Gutiérrez, A
    Lladó, AS
    DISCRETE MATHEMATICS, 2002, 244 (1-3) : 83 - 94
  • [10] REGULAR GRAPHS IN REGULAR MAPS
    WILSON, SE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A654 - A654