Investigation on electrochemical capture of CO2 in p-Benzoquinone solutions by in situ FT-IR spectroelectrochemistry

被引:16
|
作者
Fan, Hui [1 ]
Cheng, Longjiu [1 ]
Jin, Baokang [1 ]
机构
[1] Anhui Univ, Dept Chem, Hefei 230601, Anhui, Peoples R China
关键词
p-Benzoquinone; Carbon dioxide; Electrochemical capture; In situ FT-IR spectroelectrochemistry; Stoichiometry study; CARBON; REDUCTION; ABSORPTION; SEPARATION; LIQUIDS; COMPLEX;
D O I
10.1016/j.electacta.2019.134882
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical capture of carbon dioxide in p-Benzoquinone (BQ) - acetonitrile and BQ - aqueous solutions have been investigated by cyclic voltammetry (CV). Two well-defined couples of anodic and cathodic peaks in CV curve of BQ in acetonitrile solvent are substituted by one redox couple peaks with E-1/2 = -0.30 V once CO2 is added. The absorption peak at 2348 cm(-1) of in situ FT-IR spectroelectrochemistry indicates that CO2 is involved in the electrochemical reactions. Cyclic voltabsorptometry (CVA) and derivative cyclic voltabsorptometry (DCVA) of BQ-acetonitrile with different concentration of CO2 are investigated to demonstrate the reaction stoichiometry. The absorbance value of BQ at 2348 cm(-1) is a constant during reduction process when CO2 concentration is lower than 50%. However, there is a decrease at -1.3 V potential due to the CO2 reduction when it is higher than 50%. This indicates the stoichiometry of BQ(center dot-) to CO2 is 1:1 during electrochemical capture of CO2 in CH3CN solution. Similar reaction between CO2 and BQ is observed in aqueous solution. However, the stoichiometric number of BQ(center dot-) to CO2 is 1:2, forming [BQ-2CO(2)](center dot-), which is finally reduced to [BQ-2CO(2)](2)(-). The mechanism proposed is consistent with theoretical calculation since the activation energy of [BQ-CO2](center dot-) formation is much lower than that of BQ(center dot-) reduction. The stable structures of CO2 adduct of the reactions in aprotic and aqueous solvents are also proposed according to density functional theoretical (DFT) calculations. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Influence of the support on CO2 methanation over Ru catalysts: an FT-IR study
    S. Scirè
    C. Crisafulli
    R. Maggiore
    S. Minicò
    S. Galvagno
    Catalysis Letters, 1998, 51 : 41 - 45
  • [32] Influence of the support on CO2 methanation over Ru catalysts:: an FT-IR study
    Scire, S
    Crisafulli, C
    Maggiore, R
    Minico, S
    Galvagno, S
    CATALYSIS LETTERS, 1998, 51 (1-2) : 41 - 45
  • [33] An FT-IR study of crown ether-water complexation in supercritical CO2
    Rustenholtz, A
    Fulton, JL
    Wai, CM
    JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (50): : 11239 - 11244
  • [34] In situ high pressure FT-IR spectroscopy on alkene hydroformylation catalysed by RhH(CO)(PPh3)3 and Co2(CO)8
    Caporali, M
    Frediani, P
    Salvini, A
    Laurenczy, G
    INORGANICA CHIMICA ACTA, 2004, 357 (15) : 4537 - 4543
  • [35] In situ FT-IR spectroscopic investigation of gold supported on tungstated zirconia as catalyst for CO-SCR of NOx
    Kantcheva, M.
    Milanova, M.
    Mametsheripov, S.
    CATALYSIS TODAY, 2012, 191 (01) : 12 - 19
  • [36] Investigation of CO/NO reaction on supported Cu and PD using in-situ FT-IR and mass spectroscopy.
    Smith, BW
    Marten, C
    Paul, DK
    Hall, HW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 214 : 38 - CATL
  • [37] FT-IR study on the interaction of CO2 with H2 and hydrocarbons over supported Re
    Sojymosi, F
    Zakar, TS
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2005, 235 (1-2) : 260 - 266
  • [38] Mechanistic study of CO2 photoreduction in Ti silicalite molecular sieve by FT-IR spectroscopy
    Ulagappan, N
    Frei, H
    JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (33): : 7834 - 7839
  • [39] Characterization of Rh-Co/SiO2 catalysts for CO2 hydrogenation with TEM, XPS and FT-IR
    Kusama, H
    Okabe, K
    Arakawa, H
    APPLIED CATALYSIS A-GENERAL, 2001, 207 (1-2) : 85 - 94
  • [40] In Situ FT-IR Investigation of Methanol and CO Electrooxidation on Cubic and Octahedral/Tetrahedral Pt Nanoparticles Having Residual PVP
    Levendorf, Augusta M.
    Sun, Shi-Gang
    Tong, YuYe J.
    ELECTROCATALYSIS, 2014, 5 (03) : 248 - 255