A Fixed-Size Pruning Approach for Optimum-Path Forest

被引:0
|
作者
Costa, Leonardo da Silva [1 ]
Barbosa, Gabriel Santos [2 ]
da Rocha Neto, Ajalmar Rego [1 ]
机构
[1] IFCE, Fed Inst Ceara, Fortaleza, Ceara, Brazil
[2] IFCE, Fed Inst Ceara, Maracanau, Ceara, Brazil
关键词
Optimum-path forest; Genetic algorithms; Pattern recognition; Pruning; INTRUSION DETECTION; CLASSIFICATION; ALGORITHMS;
D O I
10.1007/978-3-030-20518-8_60
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optimum-Path Forest (OPF) is a graph-based classifier that has achieved remarkable results in various applications. OPF has many advantages when compared to other supervised classifiers, since it is free of parameters, achieves zero classification errors on the training set without overfitting, handles multiple classes without modifications or extensions, and does not make assumptions about the shape and separability of the classes. Despite these advantages, it still suffers with a high computational cost required to execute its classification process, which grows proportionally to the size of the training set. In order to overcome this drawback, we propose a new approach based on genetic algorithms to prune irrelevant training samples and still preserve accuracy in OPF classification. In our proposal, named FSGAP-OPF, the standard reproduction and mutation operators are modified so as to maintain the number of pruned patterns with a fixed-size. To evaluate the performance of our method, we tested its generalization capabilities on datasets obtained from the UCI repository. On the basis of our experiments, we can say that FSGAP-OPF is a good alternative for classification tasks and can also be used in problems where the memory consuming is crucial.
引用
收藏
页码:723 / 734
页数:12
相关论文
共 50 条
  • [1] On the Training Patterns Pruning for Optimum-Path Forest
    Papa, Joao P.
    Falcao, Alexandre X.
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2009, PROCEEDINGS, 2009, 5716 : 259 - 268
  • [2] A New Genetic Algorithm-based Pruning Approach for Optimum-Path Forest
    Barbosa, Gabriel Santos
    Costa, Leonardo da Silva
    Rocha Neto, Ajalmar R.
    2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 13 - 18
  • [3] Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization
    Nachif Fernandes, Silas Evandro
    Papa, Joao Paulo
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 984 - 991
  • [4] Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization
    Rodrigues, Douglas
    Souza, Andre Nunes
    Papa, Joao Paulo
    2017 30TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2017, : 127 - 133
  • [5] A New Approach for Nontechnical Losses Detection Based on Optimum-Path Forest
    Oba Ramos, Caio Cesar
    de Sousa, Andra Nunes
    Papa, Joao Paulo
    Falcao, Alexandre Xavier
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (01) : 181 - 189
  • [6] Pruning optimum-path forest ensembles using metaheuristic optimization for land-cover classification
    Nachif Fernandes, Silas Evandro
    de Souza, Andre Nunes
    Gastaldello, Danilo Sinkiti
    Pereira, Danillo Roberto
    Papa, Joao Paulo
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (20) : 5736 - 5762
  • [7] Nature-inspired optimum-path forest
    Sugi Afonso, Luis Claudio
    Rodrigues, Douglas
    Papa, Joao Paulo
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (01) : 317 - 328
  • [8] Nature-inspired optimum-path forest
    Luis Claudio Sugi Afonso
    Douglas Rodrigues
    João Paulo Papa
    Evolutionary Intelligence, 2023, 16 : 317 - 328
  • [9] Information Ranking Using Optimum-Path Forest
    Ascencao, Nathalia Q.
    Afonso, Luis C. S.
    Colombo, Danilo
    Oliveira, Luciano
    Papa, Joao P.
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [10] A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic
    de Souza, Renato William R.
    de Oliveira, Joao Vitor Chaves
    Passos, Leandro A., Jr.
    Ding, Weiping
    Papa, Joao P.
    de Albuquerque, Victor Hugo C.
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (12) : 3076 - 3086