Application of variational mode decomposition energy distribution to bearing fault diagnosis in a wind turbine

被引:21
|
作者
An, Xueli [1 ]
Tang, Yongjun [1 ]
机构
[1] China Inst Water Resources & Hydropower Res, Beijing 100038, Peoples R China
基金
中国国家自然科学基金;
关键词
Wind turbine; spherical roller bearing; fault diagnosis; variational mode decomposition; energy distribution; ROLLING ELEMENT BEARING;
D O I
10.1177/0142331215626247
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For the unsteady characteristics of a fault vibration signal of a wind turbine's rolling bearing, a bearing fault diagnosis method based on variational mode decomposition of the energy distribution is proposed. Firstly, variational mode decomposition is used to decompose the original vibration signal into a finite number of stationary components. Then, some components which comprise the major fault information are selected for further analysis. When a rolling bearing fault occurs, the energy in different frequency bands of the vibration acceleration signals will change. Energy characteristic parameters can then be extracted from each component as the input parameters of the classifier, based on the K nearest neighbour algorithm. This can identify the type of fault in the rolling bearing. The vibration signals from a spherical roller bearing in its normal state, with an outer race fault, with an inner race fault and with a roller fault were analyzed. The results showed that the proposed method (variational mode decomposition is used as a pre-processor to extract the energy of each frequency band as the characteristic parameter) can identify the working state and fault type of rolling bearings in a wind turbine.
引用
收藏
页码:1000 / 1006
页数:7
相关论文
共 50 条
  • [41] The Fault Diagnosis of Rolling Bearing Based on Variational Mode Decomposition and Iterative Random Forest
    Qin, Xiwen
    Guo, Jiajing
    Dong, Xiaogang
    Guo, Yu
    SHOCK AND VIBRATION, 2020, 2020
  • [42] Rolling Bearing Fault Diagnosis Based on Successive Variational Mode Decomposition and the EP Index
    Guo, Yuanjing
    Yang, Youdong
    Jiang, Shaofei
    Jin, Xiaohang
    Wei, Yanding
    SENSORS, 2022, 22 (10)
  • [43] Application of Variational Mode Decomposition to Diagnose Rub-impact Fault of Hydraulic Turbine
    Wu, Changli
    Xiao, Jian
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2017, : 799 - 802
  • [44] A New Method of Obtaining BPA and Application to the Bearing Fault Diagnosis of Wind Turbine
    Zuo, Ziyang
    Xu, Yufa
    Chen, Guochu
    ISIP: 2009 INTERNATIONAL SYMPOSIUM ON INFORMATION PROCESSING, PROCEEDINGS, 2009, : 368 - 371
  • [45] Recursive variational mode extraction and its application in rolling bearing fault diagnosis
    Pang, Bin
    Nazari, Mojtaba
    Tang, Guiji
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 165
  • [46] An Iterative Modified Adaptive Chirp Mode Decomposition Method and Its Application on Fault Diagnosis of Wind Turbine Bearings
    Ding, Ao
    Tang, Guiji
    Wang, Xiaolong
    He, Yuling
    Fan, Shiyan
    MACHINES, 2022, 10 (08)
  • [47] Adaptive single-mode variational mode decomposition and its applications in wheelset bearing fault diagnosis
    Li, Cuixing
    Liu, Yongqiang
    Liao, Yingying
    Liu, Wenpeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (12)
  • [48] Application of Parameter Optimized Variational Mode Decomposition Method in Fault Diagnosis of Gearbox
    Wang, Zhijian
    He, Gaofeng
    Du, Wenhua
    Zhou, Jie
    Han, Xiaofeng
    Wang, Jingtai
    He, Huihui
    Guo, Xiaoming
    Wang, Junyuan
    Kou, Yanfei
    IEEE ACCESS, 2019, 7 : 44871 - 44882
  • [49] Application of Variational Mode Decomposition Based Demodulation Analysis in Gearbox Fault Diagnosis
    Zhang, Dong
    Feng, Zhipeng
    2016 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, 2016, : 1469 - 1474
  • [50] Application of tentative variational mode decomposition in fault feature detection of rolling element bearing
    Gong, Tingkai
    Yuan, Xiaohui
    Yuan, Yanbin
    Lei, Xiaohui
    Wang, Xu
    MEASUREMENT, 2019, 135 : 481 - 492